Effect of Lithium chloride on Vapor Liquid Equilibria for Ethanol-Water System

V. Wankhade, R. Sirsam

University Institute of Chemical Technology, North Maharashtra University, Jalgaon – 425001, Maharashtra, India.

ARTICLE DETAILS

Article history:
Received 30 April 2015
Accepted 25 May 2015
Available online 17 June 2015

ABSTRACT

The effect of lithium chloride (LiCl) salt on vapor-liquid equilibrium (VLE) of the binary ethanol-water system has been experimentally investigated at atmospheric pressure using modified Othmer equilibrium still. The mixture of ethanol-water (200 mL) of different mole fraction (0.1-0.9) was added in Othmer Still. Required volume of ethanol was calculated by equation (1), desired amount of salt (0-10 wt %) was added to this mixture. Othmer Still was placed in heating mantle, gradually heat was supplied to the Still and temperature of mixture was recorded. System was operated on total reflux for 30 min to attend equilibrium condition and corresponding boiling temperature was recorded. System was then allowed to cool. Once the system attends room temperature the liquid sample was withdrawn for analysis.

\[n = \frac{\rho_{\text{eth}} \cdot V_{\text{eth}}}{\rho_{\text{w}} \cdot V_{\text{w}}} \]

where \(n, \rho_{\text{eth}}, V_{\text{eth}}, \rho_{\text{w}}, V_{\text{w}} \) mole fraction of ethanol, density of ethanol, density of water, volume of ethanol, volume of water, molecular weight of ethanol, molecular weight of water respectively.

1. Introduction

In chemical industry, the estimation of the salt effect on the vapor liquid equilibria of alcohol aqueous solution plays an important role for the distillation process [1]. For the design of distillation process it is necessary to have simple and accurate vapor liquid equilibria data of solutions [2]. Several researches has investigated the effect of various salt on VLE of various binary/ternary system using models Margules, Van Laar [3], Wilson [4-10], NRTL [11-17], UNIFAC [18-21]. Addition of salt is the very common method to change the relative volatility and to alter the azeotropic composition [22]. Salt addition results in changing the solubility, partial and vapor pressure, density, surface tension, thermal conductivity of the mixture [23]. The force field modifies among the different solvent components due to the presence of non-electrolyte and non-volatile electrolyte, hence the solvent components are either salted-out or salted-in of the liquid and vapor composition is modified [24]. Salt addition has several advantages such as a smaller amount of separating agent, a lower energy requirement, being a solid no contamination is produced in the distilled products [25]. Ethanol has several uses in chemical industry such as detergent, aerosol, medicine and food, cosmetics, perfumes, raw material, intermediate in chemical synthesis of cyclic compound chains, organics and ester [26]. In this work, the effect of LiCl at salt mass fraction from 0-10 % on VLE of ethanol-water system was experimentally investigated at atmospheric pressure using a modified Othmer equilibrium Still.

2. Experimental Methods

2.1. Materials

The chemical used are Ethanol (Merck), distilled water and lithium chloride anhydrous (Avra Synthesis Pvt. Ltd.). The chemicals were directly used without further purification.

2.2. Apparatus and Procedure

The VLE result were measured with a recirculation Othmer type still which was modified in order to minimize the volume of condensate so as to be able to consider the liquid mole fraction constant during the experiment. So it was possible to eliminate the analysis of the liquid phase composition and also to achieve the equilibrium state more rapidly. The solution is saturated at 10 wt % LiCl concentration. It has been observed that the addition of salt (0-10 wt %) changes the composition of ethanol in vapor phase at all liquid composition (0.1-0.9 mole fraction). The azeotropic point was shifted from 0.905 to 0.845, 0.840, 0.850 and 0.855 by addition of 2.5%, 5%, 7.5% and 10% LiCl salt respectively. The solution is saturated at 10 wt % LiCl which shows maximum positive deviation for the system. These changes in vapor composition may be due to the attraction of more polar component (water) by the electrostatic field of ions. Therefore the compositions of less polar component (ethanol) increase in vapor phase [2]. All the further experiments were carried out at the saturated condition.

*Corresponding Author
Email Address: rajkumarsirsam@gmail.com (R. Sirsam)
The experimental activity coefficient of pure liquid in non-ideal mixture at boiling point temperature (T) and local atmospheric pressure (P) was calculated by using equation (2).

\[y_i P = x_i y_i P^{\text{sat}} \]

where \(y \) is the vapor phase composition, \(x \) liquid phase composition, \(P \) local atmospheric pressure, \(P_{\text{sat}} \) saturated vapor pressure for solvent pair \(i-j \) (ethanol-water) respectively.

Saturated vapor pressure \(P^{\text{sat}} \) was calculated for solvent pair \(i-j \) from Antoine equation (3).

\[\log(P_{\text{sat}}) = A_i - B_i / (T + C_i) \]

Different activity coefficient models were used to predict the activity coefficient viz Margule (Eq. 4-5), Van Laar (Eq. 6-7), Wilson (Eq. 8-10), NRTL (Eq. 11-16), UNIFAC (Eq. 17-27) for ethanol and water respectively.

\[\log(y_i^{\ast} P^{\ast}) = x_i [A_{12} + 2 x_i (A_{12} - A_{11})] \]

\[\log(y_i^{\ast} P^{\ast}) = x_i [A_{11} + 2 x_i (A_{12} - A_{11})] \]

\[\log(y_i^{\ast} P^{\ast}) = A_{12} \times \frac{x_i (x_i + 1)}{A_{12} x_i + 1} \]

\[\log(y_i^{\ast} P^{\ast}) = A_{12} \times \frac{x_i (x_i + 1)}{A_{12} x_i + 1} \]

\[\ln y_i^{\ast} = -\ln [x_i + 2 A_{12} x_i - \frac{A_{12} x_i + 1}{A_{11} x_i + 1}] \]

\[\ln y_i^{\ast} = -\ln [x_i + 2 A_{12} x_i - \frac{A_{12} x_i + 1}{A_{11} x_i + 1}] \]

where \(A_{12} = \frac{\partial^2 G}{\partial x_i \partial x_j} \) \(\frac{RT}{v_i} \) \(\frac{RT}{v_j} \) \(A_{12} = \frac{\partial^2 G}{\partial x_i \partial x_j} \) \(\frac{RT}{v_i} \) \(\frac{RT}{v_j} \) \(A_{12} = \frac{\partial^2 G}{\partial x_i \partial x_j} \) \(\frac{RT}{v_i} \) \(\frac{RT}{v_j} \)

Here \(G_{12} = \frac{(g_{12} - g_{22})}{RT} \) \(G_{12} = \frac{(g_{12} - g_{22})}{RT} \) \(G_{12} = \frac{(g_{12} - g_{22})}{RT} \)

and \(G_{12} = \exp \left\{ -A_{12} x_i \right\} \)

\[G_{12} = \exp \left\{ -A_{12} x_i \right\} \]

\[\ln y_i = \ln y_i^{\ast} + \ln y_i^{\ast} \]

\[\ln y_i = \ln \left[1 - \ln \left(\sum \frac{\theta_j}{\theta_i} \right) r_{ij} \left(\sum \frac{\theta_j}{\theta_k} \right) r_{jk} \right] \]

\[\ln y_i^{\ast} = q_i [1 - \ln (\sum \frac{\theta_j}{\theta_i}) r_{ij} \left(\sum \frac{\theta_j}{\theta_k} \right) r_{jk}] \]

\[\ln y_i^{\ast} = q_i [1 - \ln (\sum \frac{\theta_j}{\theta_i}) r_{ij} \left(\sum \frac{\theta_j}{\theta_k} \right) r_{jk}] \]

Here \(\theta_i = \frac{q_i}{\sum q_j} \) \(\Phi_i = \frac{\text{risk}}{\sum \text{risk}} \)

\[\Phi_i = \frac{\text{risk}}{\sum \text{risk}} \]

and \(r_{ij} = \exp \left\{ -\frac{q_{ij}^{\text{univ}}}{RT} \right\} \)

\[r_{ij} = \exp \left\{ -\frac{q_{ij}^{\text{univ}}}{RT} \right\} \]

\[q_i = \sum k v_i \rho_i \] \(R_k = V_{\text{vol}} / 15.17 \)

\[Q_i = A_{\text{vol}} / (2.5^i 10^6) \]

The theoretical vapor phase composition was calculated by following equation (28, 29).

\[y_i^{\ast} = x_i y_i P^{\text{sat}} / (x_i y_i P^{\text{sat}} + x_j y_j P^{\text{sat}}) \]

\[y_i^{\ast} = x_i y_i P^{\text{sat}} / (x_i y_i P^{\text{sat}} + x_j y_j P^{\text{sat}}) \]

All the models constant are listed in table 1.

Table 1 Model constants for different equation [3]

<table>
<thead>
<tr>
<th>Model</th>
<th>Component Parameters</th>
<th>Ethanol(1)</th>
<th>Water(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margules</td>
<td>(A_{12} = 0.6848)</td>
<td>(A_{12} = 0.3781)</td>
<td></td>
</tr>
<tr>
<td>Van Laar</td>
<td>(A_{12} = 0.7292)</td>
<td>(A_{12} = 0.4140)</td>
<td></td>
</tr>
<tr>
<td>Wilson</td>
<td>(\lambda_{12} = 382.30)</td>
<td>(\lambda_{21} = 955.45)</td>
<td></td>
</tr>
<tr>
<td>NRTL*</td>
<td>(\lambda_{12} = 382.30)</td>
<td>(\lambda_{21} = 955.45)</td>
<td></td>
</tr>
<tr>
<td>UNIFAC</td>
<td>(\lambda_{12} = 382.30)</td>
<td>(\lambda_{21} = 955.45)</td>
<td></td>
</tr>
<tr>
<td>Antoine Constants</td>
<td>(A = 0.04494)</td>
<td>(A = 7.96681)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(B = 1554.30)</td>
<td>(B = 1660.21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(C = 222.65)</td>
<td>(C = 220.00)</td>
<td></td>
</tr>
</tbody>
</table>

*significance of \(q_{ij} \) is similar to that of \(\lambda_{ij} \) in Wilson’s equation.

Fig. 2 shows experimental liquid composition versus calculated vapor phase composition for various models at 10 wt % LiCl. Margules and Van Laar predicts complete elimination of azotropic point where as other model shows close relation with experimental values. Fig. 3 shows plot of experimental and calculated vapor phase composition. It is observed that most of the data falls near the diagonal line, which implies the fairly good indication agreement of the model.
4. Conclusion

VLE data where measured for ethanol-water mixture at 10 wt % Lithium chloride salt, which shows considerable salting-out effect for Ethanol. The Margules, Van Laar, Wilson, NRTL, and UNIFAC models were used to predict the vapor phase composition and Activity coefficients. The predicted vapor composition data by NRTL model satisfactorily agree with the experimental one. The calculated activity coefficient by UNIFAC, NRTL and Wilson model are comparable with experimental data.

Acknowledgement

This work was supported financially by Technical Quality Improvement Program (TEQIP), University Institute of Chemical Technology, North Maharashtra University, Jalgaon, India-425001.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>Antoine constant</td>
</tr>
<tr>
<td>(A_{ss})</td>
<td>surface area</td>
</tr>
<tr>
<td>(A_{i2}, A_{j2})</td>
<td>parameters in the Margules equation</td>
</tr>
<tr>
<td>(A_{i2}, A_{j2})</td>
<td>parameters in the Van Laar equation</td>
</tr>
<tr>
<td>(B, C)</td>
<td>Antoine constant, (C)</td>
</tr>
<tr>
<td>(P_i)</td>
<td>vapor pressure of (i) component, (c c / g) mol</td>
</tr>
<tr>
<td>(q)</td>
<td>pure component area parameter</td>
</tr>
<tr>
<td>(Q)</td>
<td>group area parameter</td>
</tr>
<tr>
<td>(R)</td>
<td>gas law constant, (c c / g) mol K</td>
</tr>
<tr>
<td>(r_i)</td>
<td>pure component parameter</td>
</tr>
<tr>
<td>(R_i)</td>
<td>group volume parameter (with subscript)</td>
</tr>
<tr>
<td>(T)</td>
<td>temperature, °C</td>
</tr>
<tr>
<td>(v^i)</td>
<td>liquid molar volume of the (i) component, (c c / g) mol</td>
</tr>
<tr>
<td>(V_{sa})</td>
<td>van der waals group volume</td>
</tr>
<tr>
<td>(x_i)</td>
<td>liquid mole fraction of the (i) component</td>
</tr>
<tr>
<td>(y_i)</td>
<td>vapor mole fraction of the (i) component</td>
</tr>
<tr>
<td>(z)</td>
<td>lattice coordination number, a constant here set equal to ten</td>
</tr>
<tr>
<td>(\gamma_i)</td>
<td>activity coefficient of the (i) component</td>
</tr>
<tr>
<td>(\Gamma_i)</td>
<td>activity coefficient of group (k) in pure component (i)</td>
</tr>
<tr>
<td>(\Phi_i)</td>
<td>segment fraction of component (i)</td>
</tr>
<tr>
<td>(\theta_i)</td>
<td>area fraction of group (k)</td>
</tr>
<tr>
<td>(\psi^{(k)})</td>
<td>number of group of kind (k) in a molecule of component (i)</td>
</tr>
<tr>
<td>(\tau_0, \tau_3)</td>
<td>binary parameter</td>
</tr>
<tr>
<td>(\Psi_{sa})</td>
<td>interaction parameter</td>
</tr>
<tr>
<td>(A_0)</td>
<td>variables defined by Wilson equation</td>
</tr>
<tr>
<td>(\lambda_{i} - \lambda_{j}, (\lambda_{i} - \lambda_{j}))</td>
<td>parameter in the Wilson equation, (c c / g) mol</td>
</tr>
</tbody>
</table>

Superscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>combinatorial</td>
</tr>
<tr>
<td>(R)</td>
<td>residual</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i, j, k)</td>
<td>component (i, j, k)</td>
</tr>
<tr>
<td>(k, m, n)</td>
<td>group (k, m, n)</td>
</tr>
</tbody>
</table>

References