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Polythiophene (PTh) was prepared at 323K by oxidation method using ferric chloride as an oxidizing 
agent. PTh-CoO composites were prepared by mixing PTh and CoO in different amounts. XRD studies on 
these composites revealed peaks corresponding to CoO structure. Using these peaks, grain sizes were 
estimated and they were found to be of few nanometers. SEM image of pure CoO showed nano size 
grains. Whereas, SEM images of PTh-CO composites exhibited nano size grains and some tubular 
structure. DC conductivity has been measured in the temperature range from 300K to 425K. 
Conductivity has been analyzed using polaron hopping models and activation energy was determined. 
Activation energy was found to be the fraction of a meV for all the composites. With increase in CoO 
content, Ea decreased. Densities of states of charge carriers at Fermi level were determined. 
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1. Introduction 

Conducting polymers are important materials due to their unique 
properties which are useful for various applications.  Among these organic 
materials, polythiohene (PTh) and its derivatives have attracted much 
attention as they can be easily prepared and have good stability, and show 
higher conductivity [1-5]. The conductivity of these materials can be tuned 
by doping. 

Dopant anion plays important role in polymerization [6-9]. PTh has 
been successfully combined with different metal nanoparticles and 
produced nanocomposites. Nanocomposites possess physical, chemical 
and biological properties which are very special can be used in making 
quantum electronic devices, magnetic recording materials, sensors, 
battereies etc [10-12]. Cobalt oxide has got scientific and technological 
importance [13-15]. Cobalt oxide is used as a super capacitor electrode 
[16]. The room temperature conductivity of PTh-Zno composites was 
found to be of the order of 10-4 Ωm-1 [11]. Hydrothermally made 
polyaniline–cobalt nanocomposites showed increasing trend in 
conductivity with increasing amounts of cobalt nanoparticles [17]. 
Polypyyrole-V2O5 composites showed decrease in conductivity upto 10% 
of V2O5 and remained constant for higher concentration of V2O5 [18]. DC 
conductivity of polyaniline-V2O5 composites of different wt% of V2O5 was 
found to change from 10-7 to 10-9 Ωcm-1 [19]. The room temperature 
conductivity values of polypyrrole-TeO2 and   PTh-TeO2 composites are 
reported to be 1 x 10-5 Ωcm-1 and 2 x 10-2 Ωcm-1 respectively [20]. In these 
composites, conductivity has been observed to have increased by 103 
orders of magnitude compared to their pure PPy and PTh .The composites, 
2PTh-V2O5 and PTh-2V2O5 which were made by chemical oxidative 
method were studied for electrical conductivity. Later composite gave 
conductivity an order of magnitude higher than the former [21]. Here, we 
report our conductivity studies on PTh-CoO composites in the 
temperature range from 300 to 425K. 

 
2. Experimental Methods 

Analytical grade thiophene, ferric chloride, methanol and chloroform 
were used as starting materials in the preparation of PTh. Aqueous 
solution of thiophene was prepared and stirred. Aqueous chloroform and 

ferric chloride solution were added drop wise to the homogeneous PTh 
solution. The mixture was magnetic stirred for 24 hours and the black 
precipitates became brown indicating the formation of Polythiophene [20, 
22]. The powder was dried and grinded. The synthesis was carried out at 
323K. The PTh-CoO composites nanoparticles were prepared by 
mechanical mixing of prepared polythiophene and adding analytical grade 
CoO in different amounts defined as (PTh)100-x (CoO)x, where x= 5%, 10%, 
15%, 20% and 25% and are labelled as PTh-CO1, PTh-CO2, PTh-CO3,  PTh-
CO4 and   PTh-CO5 respectively. 

Samples they were subjected to XRD studies using X’Pert Pro X-Ray 
diffractrometer. To observe surface structure, the SEM images were 
recorded using JEOL- JSM-6360 Scanning Electron Microscope. 

The compressed pellets of the composites were made under hydraulic 
pressure of 5 ton load. The pellets were annealed at 373K. Electrical 
conductivity has been measured in the temperature range from 300K to 
425K in a Danbridge resistance Bridge (DB 502). The bridge applies 
suitable amount of voltage V, across the pellet and measures current, I, 
through it. The resistivity, ρ, has been determined using the expression, 
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Where A is surface area and l the thickness of the pellet. On inputting A 
and l values DB502 itself calculated ρ. Conductivity, σ=1/ρ was calculated. 
Chromel-Alumel thermo-couple was used to measure temperature with 
accuracy of ± 1K. The errors on σ were estimated to be within 2%.  
 
3. Results and Discussion 

3.1 X-Ray Diffraction 

A typical XRD pattern obtained for pure PTh and PTh-CO5 composite 
are shown in Figs. 1 and 2. 

No sharp peaks can be observed in Fig. 1 which indicate amorphous 
nature of PTh. XRD patterns reported for PTh made by others also 
revealed amorphous nature [20, 23]. 

The (Fig. 2) reveals peaks at 2θ = 18.98, 31.26, 36.84, 44.80, 59.36 and 
65.22 corresponding to d = 4.67 Å, 2.85 Å, 2.43 Å, 2.02 Å, 1.55 Å and 1.42 
Å respectively. 

These observed peak positions are comparable with those observed for 
pure cobalt oxide nanoparticles [24, 25]. Using peak widths and by 
following Scherer equation [26], the grain sizes were determined as 27.06 
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nm, 10.21 nm, 18.58 nm, 13.47 nm, 19.39 nm and 22.19 nm, for PTh-CO1, 
PTh-CO2,  PTh-CO3, PTh-CO4 and PTh-CO5 respectively. 

 

 
Fig. 1 X-ray diffraction pattern of pure PTh. 

 
Fig. 2 X-ray diffraction pattern of and PTh-CO5 composites. 

 

3.2 SEM 

The SEM images of pure CoO and PTh-CO1 composite are shown in Figs. 
3(a) and 3(b) respectively. Fig. 3(a) shows nanoparticles agglomerated 
with micropores in between.   In Fig 3(b), tubular structures along with 
grains can be observed. Here, grains may be due to CoO and tubular 
structure may be due to PTh in the composites. It may be noted that 
tubular structure of pure PTh has been reported to be the feature of the 
PTh synthesised at temperatures above 323K [22], and no such features 
were observed in [20]. The average sizes of pure CoO in SEM image shown 
in Fig. 3(a) is determined to be 24nm which is in the range of sizes 
obtained from XRD patterns. Average grain size determined on SEM 
images shown in Fig. 3(b) are 48nm. The average grain sizes determined 
for PTh-CO2, PTh-CO3, PTh-CO4 and PTh-CO5 are 72 nm, 63 nm, 50 nm 
and 59 nm respectively. 

 

                 

(a)                                                                               (b) 

 Fig. 3 SEM images of (a) pure CoO (b) PTh-CO1 composite 

 

3.3 Conductivity 

Conductivity versus temperature plot for all the PTh-CO composites is 
shown in Fig. 4. Conductivity increased with increasing temperature 
indicating semiconducting nature. All the present composites behaved in 
the same fashion. [26, 27]. Variation of conductivity with wt% of CoO has 
not followed any systematic trend. 

The measured room temperature conductivites for PTh-CO1, PTh-CO2, 
PTh-CO3, PTh-CO4 and PTh-CO5 composites are 1.16 x10-7 Ωm-1, 1.18 
x10-7 Ωm-1,, 1.15 x10-7 Ωm-1,, 1.206 x10-7 Ωm-1 and 1.879 x10-7 Ωm-1, 
respectively. These conductivities values are two orders of magnitude 
smaller than those measured for pure PTh [22]. This implies that 
conductivity decreased with the incorporation of CoO with PTh. The 
temperature variation of conductivity has been fit to conductivity 
expression derived by for small polaron hopping (SPH) in noncrystalline 
semiconducting solids. According to this model, the conductivity in the 
non-adiabatic region is given by   [26, 28, 29], 
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Where σo is the pre exponential factor and Ea the activation energy for 
small polaron hopping. 

 

 
Fig. 4 Temperature dependence of electrical conductivity of PTh-CO composite. 

 

The plots of ln(σT) versus (1/T) were made as per Eqn. (2) and shown 
in Fig. 5. The linear lines were fit to the data in the high temperature region 
where the data appeared linear. The slopes were used and activation 
energy, Ea Was calculated. 

Variation of Ea as a function of wt% of V2O5 composites are plotted in 
Fig. 6. From the figure, it is clear that Ea decreased with increase of wt% of 
V2O5 content.  

 

 
Fig. 5 Plots of  ln(σT) versus (1/T) for PTh-CO composites. Solid lines are linear fits 
as per Mott’s SPH model. 
 
 

 
Fig. 6 Variation of Ea and σ at 400K as a function of weight % of V2O5 in PTh-VO  
           composites. 

 
Increase in conductivity with increase in CoO content may be due to the 

fact that conduction process become relatively easy by the presence of CoO 
grains in between PTh tubes or grains. Decrease in Ea with increase in CoO 

concentration may be attributed to the decrease in the scattering rate of 
polarons with increase of CoO content. Similar results have been reported 
for polyaniline doped with camphor sulphonic acid and blended with 
tetrameric cobalt phthalcocyanine and polyaniline-Co3O4 [13, 30]. 

The conductivity data deviated from SPH model line has been fit to 
Variable Range Hopping (VRH) model expression given by, 
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Here, N(EF) refers to density of states at Fermi level, υo is the phonon 
frequency (=1013 HZ) and α= 1.2 Å (size of the monomer unit) [31]. Mott’s 
VRH model has also been used previously for understanding conductivity 
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variation in polypyrrole and Polythiophene [23, 32]. The plots of ln(σ) 
versus (T-1/4) were made according to this model and shown in Fig. 7. 

 

 
Fig. 7 Plots of ln(σ) versus (1/T-1/4) for PTh-CO composites. Solid lines are linear 
fits as per Mott’s VRH model. 
 

The linear lines were fit through the data. From the figure it can be 
noted that for each sample, still there is some data deviating from the fit 
line.  Similar deviations of data from the VRH model fit have been reported 
previously also [22, 32-34]. 

Density of states at Fermi level N(EF) of PTh-VO composites have been 
determined using the slopes and they are tabulated in Table.1. These N(EF) 
values are in the range from 1028 eV-1 m-3 to 1030 eV-1 m-3. These N(EF) 
values appears to be high compared values reported for PPY-Ag 
composites [26]. 

 
Table. 1 Density of states at Fermi level, N(EF),  for PTh-VO composites.  

Systems PTh-CO1 PTh-CO2 PTh-CO3 PTh-CO4 PTh-CO5 

 

N(EF) (eV-1 m-3) 

 

2.75 x 1028 

 

2.22  x 1028 

 

0.11 x 1030 

 

1.17x 1030 

 

1.87 x 1030 

 
 

4. Conclusion 

Polythophene has been synthesised at 323K by chemical route. PTh-
CoO composites were prepared by mechanical mixing of Polythiophene 
and CoO in different amounts. XRD patterns of the composites confirmed 
incorporation of CoO with PTh. SEM images of PTh-CO composites 
exhibited nano size grains and tubular structures. Changes in conductivity, 
with temperature revealed semiconducting nature. Activation energy for 
conduction has been determined by analysing data and using small 
polaron hopping model.  Ea decreased with increase in CoO. The density of 
states of charge carriers at Fermi level were determined. 
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