Structural Characterization of Iron (III)-Salen Complexes Containing Axial Ligands – A Computational Study

P. Kavitha1, P. Karuppasamy1,2,*

1SCAD Institute of Technology, Palladam, Coimbatore – 641 664, Tamil Nadu, India.
2Post Graduate and Research Department of Chemistry, Vivekananda College, Tiruvedakam West, Madurai – 625 234, Tamil Nadu, India.

Abstract

The proximal axial ligands in non-heme enzymes play an important role in tuning the reactivities of iron (III)-salen complexes in various oxidation reactions. The present study reports the influence of axial ligands: Br, Cl, F, I, H, CH₃, OCH₃, CN, NO₂, ClO₃, 3OCCF₃, ClO⁻, SO₂H, SO₂OF, N₃ and pyridine in the structural aspects of iron(III)-salen complexes. Computational study of iron (III)-salen complexes containing these axial ligands gives the bond lengths and bond angles in the optimized structures. These values are in accordance with the reported X-ray values. The calculated energy of spin multiplicity sextet (S = 6) obtained from DFT (Density Functional Theory) lies below doublet (S = 2) and quartet (S = 4) surfaces by 13.7 and 5.8 kcal mol⁻¹ respectively, indicating that sextet is more stable compared to the other two multiplicities for all the iron(III)–salen complexes. Indeed the structural elucidation of the iron (III)-salen complexes and the corresponding oxo-iron derivatives is of paramount importance to understand the mechanism of important biological oxygenation reactions. These electron donating axial ligands in the complexes stabilize the iron centre and are responsible for the weakening of the Fe-O bond in the transition state of the oxygenation reactions.

Keywords:
Axial Ligand Effects
Iron(III)-Salen Complex
DFT Study

1. Introduction

Salen (salen=N,N-bis(salicylidene)ethylenediaminate) complexes of iron received much importance in recent times [1,2]. Rajagopal and coworkers have successfully used Mn, Fe, Cr, Co and V salen complexes to probe the active intermediates and the mechanism of enzyme-catalyzed oxidation reactions of biologically important organic substrates [3–11]. Iron salen complexes have other biological applications, and their inherent ability to bind with DNA through the electrostatic interaction [12,13] is of great importance. In previous occasions, a number of iron derivatives have been reported to have good interaction with the anticancer antibiotic Adriamycin and nucleic acids [14,15]; especially, anthracenylene has the wonderful affinity to chelate with metal cations, particularly with ferric ions to form ferric anthracenylene complexes [16]. It is interesting to note that iron (II)–salen complexes have influence over the viability of cultured human cells and they have ability to cause DNA damage [3]. So a continuous interest to study the iron (III)-salen complexes from the stand point of the electronic and structural aspects is quite obvious. The monomer of iron (III)-salen complexes in the solid state is five-coordinated with a pyramidal geometry, with the tetradentate salen ligand in a square planar coordination, by two nitrogen and two oxygen atoms, with the chloride ion in an apical position and an open sixth coordination site [17–20]. Recent studies throw much interest to elucidate the structural aspects of these iron (III) complexes by DFT calculations [21–23]. In this work, we have taken the above method of computational analysis for its excellent utility and reliability to investigate the open shell systems. Although the DFT method inclines more to overestimate the stability of high-spin states of the transition metal complexes, the share of the exchange functional applied in the B3LYP parameterization deserves more for its accountability toward optimal parameters [24].

2. Experimental Methods

2.1 Computational Details

The models for iron (III)-salen complexes were built using Gauss View 5.0 package [25]. The model complexes were optimized using density functional theory (DFT) with Becke’s three-parameter hybrid exchange functional and the Lee–Yang–Parr correlation functional [B3LYP] [26,27]. The LanL2DZ basis set for iron represents the Los Alamos nonrelativistic effective core potential (ECP) [28] and 6-31G (d, p) basis set [29] for other elements. The valence shell, including the 3d orbitals, is described by a basis set of essentially double-ζ quality including a diffuse 3d function. All geometries reported in this work are optimized without any geometrical constraints. To ensure that the optimized geometries correspond to true minima on the potential energy surface, vibrational frequencies were computed using DFT (B3LYP/6-31G (d,p)U LanL2DZ) level. All calculations were made using Gaussian 09 (Revision A.02) package [30].

3. Result and Discussion

3.1 Computational Studies

The optimized structures of the iron (III)–salen complex (b) (Cl as an axial ligand) with different spin multiplicities are shown in Fig. 1. Geometry optimization is carried out for complex b with spin multiplicities of S = 2, 4 and 6. The sextet spin is found to be more stable compared to the other two multiplicities. The energy of the complex b with sextet spin lies below doublet and quartet surfaces by 13.7 and 5.8 kcal mol⁻¹, respectively (Table 1).

Table 1 Calculated energy values (kcal mol⁻¹), relative to the most stable spin state of mononuclear five-coordinated iron(III)-salen complex (b)

<table>
<thead>
<tr>
<th>Spin multiplicity</th>
<th>Calculated energy values (kcal mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S = 6</td>
<td>0</td>
</tr>
<tr>
<td>S = 4</td>
<td>5.8</td>
</tr>
<tr>
<td>S = 2</td>
<td>13.7</td>
</tr>
</tbody>
</table>

*Corresponding Author
Email Address: pkaruppasamy23@gmail.com (P. Karuppasamy)

This paper has been accepted by the Journal of Advanced Chemical Sciences, ISSN: 2394-5311.
It can be noted from the results that the deviations in M–X=Br, M–Cl, M–I, M–F, M–CN, M–CN, M–SO$_3$, M–SO$_3$ and M–Cl distances of the mononuclear five coordinated anionic axial ligand substituted iron (III)–salen complexes (a–p). The optimized structures of axial ligand substituted mononuclear iron(III)–salen complexes (a–p) at B3LYP/6-31G(d,p) level are shown in Fig. 2. It is also inferred that all the mononuclear square pyramidal iron(III)–salen complexes (a–p) show experimental magnetic moment value around 5.9 ± 0.5 B.M. The distance between the center metal ion and the salen N/O plane is referred to as the core size. The sensitivity of this bond length with respect to the spin or oxidation state changes reflects variations in the core size associated with the M–Ns/Os bond expansion or contraction. The Fe atom lies above the plane formed by Ns and Os with the distances of 0.3, 0.4 and 0.6 Å for spin multiplicities S = 2, 4 and 6, respectively. Evidence reveals that the iron ion is perfectly fitted in the salen core, and there is no core size effect.

Table 3 Relevant geometrical parameter (bond distance (Å)) of the mononuclear five coordinated anionic axial ligand substituted iron (III)–salen complexes (a–p).

<table>
<thead>
<tr>
<th>Bond Distance (Å)</th>
<th>Calculated, spin multiplicity (S=6)</th>
<th>X-ray structurea</th>
</tr>
</thead>
<tbody>
<tr>
<td>M–Ns (average)</td>
<td>2.15 2.15 2.14 2.13 2.16 2.13 2.13 2.16 2.14</td>
<td>-</td>
</tr>
<tr>
<td>M–Os (average)</td>
<td>1.90 1.89 1.91 1.98 1.99 1.95 1.92 1.88 1.90 1.91 1.89</td>
<td>-</td>
</tr>
<tr>
<td>M–Cl</td>
<td>2.42 2.27 1.81 2.62 2.0 1.99 2.11 1.92 2.55 2.17 2.10 2.15</td>
<td>-</td>
</tr>
<tr>
<td>M–X</td>
<td>1.38 1.30 1.31 1.31 1.31 1.31 1.31 1.31 1.30 1.31 1.32</td>
<td>-</td>
</tr>
<tr>
<td>C–Os</td>
<td>1.29 1.31 1.29 1.30 1.30 1.29 1.29 1.29 1.29 1.30</td>
<td>-</td>
</tr>
<tr>
<td>Ns (average)</td>
<td>1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14</td>
<td>-</td>
</tr>
<tr>
<td>Os (average)</td>
<td>1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14</td>
<td>-</td>
</tr>
</tbody>
</table>

aThe salen nitrogen and oxygen atoms are designated as Ns and Os. The plane formed by the two N and O atoms is defined as the salen N/O plane. The distance between the Cl atom and the center of the N/O plane is denoted as Cl-salen N/O plane. bThe average Ns–M–Os (near and opposite) bond angles of the equatorial ligand. cAverage Ns–M–Cl and Os–M–Cl bond angles of the axial ligands. d Taken from ref [21]
The axial ligands have marked influence in the geometrical parameters of the iron (III)-salen complexes (a–p). The DFT calculations of all the complexes (a–p) reveal that the sextet (S=6) spin is found to be more stable compared to the other two multiplicities (S=2 and 4). It lies below doublet and quartet surfaces by 13.7 and 5.8 kcal mol⁻¹, respectively. The anionic axial ligands stabilize the iron (III)-center and weakens the Fe-O bond in the transition state of the reactions. The Fe atom lies above the plane formed by Ns and Os with the distances of 0.3, 0.4 and 0.6 Å for spin multiplicities S=2, 4 and 6, respectively. Evidence reveals that the iron is perfectly fitted in the salen core, and there is no core size effect.

Acknowledgement
The authors thank University Grants Commission (UGC) for financial support. The authors thank the Management, Principal and Head of the Department of Chemistry, Vivekananda College, Tiruvudaimar West, Madurai – 625 234, for providing research facilities and thank the Management and Principal, SCAD Institute of Technology, Palladam – 641 664, for their encouragement.

References

