1. Introduction

There has been considerable interest in the binding studies of small molecules with DNA owing to their diverse applications [1, 2]. DNA is the pharmacological target of many drugs that are currently in clinical use or are in advanced clinical trials [3, 4]. DNA has been the recognition and characterization, site for the interaction of small molecules as they yield effective information for the development of therapeutic agents for controlling gene expressions [5, 6]. Studying the interaction of pharmaceutical agents with DNA is also essential for understanding their mode of action and structural specificity of their binding reactions [7]. Interaction between small molecules and DNA provides a structural guideline in rational drug designing. It helps in the synthesis of new and improved drug entities with more selective activity, greater clinical efficacy and lower toxicity. Small molecules may bind to DNA double helical structures through three different modes (i) Electrostatic binding: occurs due to interaction between negatively charged DNA phosphate backbone and positively charged end of small molecules (ii) Intercalative binding: occurs when small molecules intercalate within stacked base pairs thereby distorting the DNA backbone and (iii) Groove binding: occurs due to hydrogen bonding or Van der Waals interaction with nucleic acid bases and small molecules in the deep major groove or the shallow minor groove. Groove binders cause no or little distortion of the DNA backbone [9]. However, many small molecules can directly interact with DNA and the factors for these interactions are quite complex. Studying DNA as a drug target is attractive due to the availability of the genome sequence, well-studied three-dimensional DNA structure and the predictability of their accessible chemical functional groups. However, the number of known DNA-based drug targets is still very limited as compared to the protein-based drug targets [10].

Coumarin (1,2-benzopyrone), the parent molecule of coumarin derivatives, is the simplest compound of a large class of naturally occurring polyphenolic substances made of fused benzene and arylone rings [11]. Coumarin is present in a wide variety of plants including cassia, lavender, yellow sweet clover, tonka beans, green tea, woodruff and in fruits such as bilberry and cloudberry. Coumarins have recently attracted much attention because of their broad pharmacological properties. Coumarin has been reported to exhibit antioxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties [12-14]. Inspite of vast pharmacological properties of coumarin, its mode of binding with DNA has not been elucidated. It is thus pertinent to study the interaction of coumarin with DNA to reveal how this compound may be further modified to enhance its biological activities. The source being natural dietary constituents, an understanding of the interactions of coumarin and other related derivatives has the potential to provide guidelines for the development of more potent compounds. Present study is concerned to give the information of redox behavior of 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one by CV at carbon paste electrode and its interaction with deoxyribonucleic acid (DNA) by UV-Visible spectrophotometer.

2. Experimental Methods

2.1 Chemicals and Apparatus

Chemicals purchased from Sigma-Aldrich, Himedia and used without purification. Melting point was determined by using open capillary tube melting point apparatus. The IR spectra were recorded on a FTIR Shimadzu-8400S spectrometer using KBr pellets. The 1HNMR and 13CNMR spectra were recorded on Varian 300 spectrometer taking TMS as standard and DMSO as a solvent. Sonication was done with the help of sonicator (with a frequency of 22 Khz with a normal power of 225 W). The pH measurement was carried out by pH system 361 digital pH meter.

2.2 Electrochemical Cells and Voltammetric Parameters

Voltammetric experiments were carried out using a Metrohm 797 V.A. Computrace (Swiss made). Cyclic voltammetry were carried out using a carbon paste electrode (d = 0.2 cm) as working electrode, a Pt wire as a counter electrode, and a Ag/AgCl (3 M KCl) as a reference electrode, in one-compartment electrochemical cell. Carbon paste electrode (d = 0.2 mm) were prepared by mixing graphite powder with paraffin wax in 3:7 ratio, then it was sonicated for 1 min in an ultrasound bath and again rinsed with water. After this mechanical treatment, the carbon paste electrode was placed in three cell system. This procedure ensured very reproducible experimental systemics 2201 double beam UV-Visible spectrophotometer were used for performing drug-DNA interaction.
2.3 Sample Preparation

For cyclic voltammetry (CV) solutions were prepared by mixing 7.0 mL of 0.01 M stock solution and 1.0 mL of 0.1 M LiCl (as supporting electrolyte) and 2.0 mL of 0.1 mol L\(^{-1}\). BR (Britton Robinson) buffer. Nitrogen gas was passed in the solution for 15 minutes and, thereafter, a blanket of nitrogen gas was maintained throughout the experiment. During the experiment solution was subjected to controlled potential electrolysis. For UV-Visible study Salmon fish sperm DNA was used without further purification, its concentration was identified spectrophotometrically using the molar absorption coefficient \(\varepsilon_{277} = 2480\) cm\(^{-1}\)mol\(^{-1}\). But here known concentration are used that are 0.0016, 0.00232, 0.00476 M and its 1.1, 1.6, 2.32, 4.76 mL volume will taking for analysis.

2.4 Synthesis of 6-Bromo-3-[N-(3-Chloro-Benzylidene)-Hydrazino]-Chromene-2-One

For 2-6 h, 0.01 mol of compound 3-hydrazinyl-2H-chromene-2-one and 0.011 mol of appropriate aromatic aldehydes and 25 mL of ethanol (96%) were refluxed. The solid that separate was filtered and recrystallized from ethanol.

FTIR (KBr) \(\nu_{\text{max}}\) (ppm, 100MHz, DMSO) \(\delta_{\text{ppm}}:\)
- 1590(NH\(_2\)), 1550(N-N), 1100(C-CN), 1625(C=O), 1675(C=O), 690-515 (C-Br), 910-630 (CCl), 1575(C-C). 1H NMR data - ppm, 300MHz, TMS) - 7.7 (m, 8H, Ar-H), 2.44 (s, 1H, NH), 6.55 (s, C-H). 13C NMR data - ppm, 100MHz, DMSO) 6pm: 162 (C=O), 120-128 (C=C), 20.9 (CH\(_3\)). 131.1(C=N).

Scheme 1: General scheme for the synthesis of 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one.

3. Results and Discussion

3.1 Cyclic Voltammetric Studies

The electrochemical behaviour of 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one at a carbon paste electrode and this experiment were carried out in 0.1 mol L\(^{-1}\) BR (Britton Robinson) buffer and 0.1 M LiCl as supporting electrolyte. Compound 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one show voltamograms at pH 10. During the voltammetric measurement a constant flux of \(N_2\) was kept over the solution surface in order to check the diffusion of atmospheric oxygen into the solution. In this study purging time is 10 sec, deposition time is 60 sec and deposition potential is -1.100 V. Several peaks were observed (Fig. 2). A study of effect of scan rate is made in order to find out the feasibility of electrochemical reactions and linear plots of \(I_{pc}\) vs \(v^{1/2}\) are obtained, that show the reduction of derivatives in this medium is diffusion controlled with increasing scan rate (Fig. 1).

3.2 Electrochemical Study of 6-Bromo-3-[N-(3-Chloro-Benzylidene)-Hydrazino]-Chromene-2-One

The cyclic voltammogram of 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one shows one electron reduction peak on different scan rate. The anodic half cycle and cathodic half cycle show one peak as mentioned in Table 1 and shown in Fig. 2. Good linear plots of \(I_{pc}\) vs \(v^{1/2}\) are obtained that show the reduction of 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one in this medium is diffusion controlled with employed scan rate (30, 50 and 75 mVs\(^{-1}\)) in Fig. 1. The shift of cathodic peak potential towards more positive values with the increase in scan rate indicates irreversible nature of the system [15].

Peak current for irreversible system is given by Randle Sevick equation

\[
I_{pc} = [2.99 \times 10^9] n^{3/2}AD^{1/2} \nu^{1/2}
\]

Where \(A\) is the area of electrode in cm\(^2\), \(D\) is the diffusion coefficient in cm\(^2\)s\(^{-1}\), \(C\) the concentration in mol L\(^{-1}\)and \(v\) is in mVs\(^{-1}\).

![Fig. 2 Cyclic voltammogram at different scan rate(30, 50 and 75 mVs\(^{-1}\)) of 6-Bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one.](image)

Table 1: Electrochemical parameters of 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{pa})</td>
<td>(mV)</td>
</tr>
<tr>
<td>(I_{pa})</td>
<td>(pA)</td>
</tr>
<tr>
<td>Scan rate</td>
<td>(mVs(^{-1}))</td>
</tr>
<tr>
<td>(E_{pc})</td>
<td>(mV)</td>
</tr>
<tr>
<td>(I_{pc})</td>
<td>(pA)</td>
</tr>
<tr>
<td>(D_{0})^{1/2}×10(^3)</td>
<td>(cm(^2)s(^{-1}))</td>
</tr>
<tr>
<td>0.29140</td>
<td>3.39475</td>
</tr>
</tbody>
</table>
DNA through intercalation. Degree of hyperchromism is depends on the strength of intercalation [19], and strength of intercalation depends on the distance between DNA and drug molecule, when distance decrease then intensity of absorption band decrease result an hypochromic shift and in this case difference between n bonding and π^* energy level also decrease, so electron transition from n bonding orbital of drug to π^* orbital of polynucleotide easily takes place then result a red or bathochromic shift [20-21].

On other hand hyperchromic effect is observed when drug molecule attach with DNA by electrostatic attraction (presence of cation), hyperchromism also reflect the structural or conformational changes in DNA molecule after binding with drug molecule, this phenomena occur due to presence of charged cation in the drug molecule, charge cation bind with more electro negative oxygen atom of phosphate group present on DNA back bone by electrostatic attraction [22] then hydrogen bonding between purine and pyrimidine base disrupted (A and T, G and C) and DNA denaturation takes place, by DNA denaturation purine and pyrimidine base are free as a result surface area (active site) increase so, the absorption intensity of band extremely increase about 40% more than free double strand DNA at the same concentration.

On the bases of maximum absorption in free drug and drug combine with DNA we can find out the binding/association constant of the drug with DNA according to Benesi-Hildebrand equation [23]

$$A_0/A_{\infty} = \frac{K_D}{K_D + [\text{DNA}]}$$

Where K_D is the association binding constant, A_0 and A_{∞} are the absorbance of drug and its complex with DNA, respectively, and K_D and A_0 are the absorption coefficient of the drug and the DNA- drug complex respectively.

The association constant can be determined from the intercept-to-slope ratios of A0/A∞ vs. 1/[DNA] plot.

Fig. 3 UV visible absorption spectra of 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one and arrow represent the increasing concentration of DNA in the solution.

Fig. 4 Graph between A_0/A_{∞} vs. 1/[DNA] plot

Fig. 3 shows the interaction of 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one with DNA, this show with increasing concentration of DNA in the drug solution the intensity of absorption band decreases, so the consequence of DNA addition is hypochromism. Fig. 4 represents the plot between A_0/A_{∞} vs. 1/[DNA], with the help of this plot we can determine the binding constant of Drug-DNA complex i.e. $K_D = 4.174 \times 10^4$ M$^{-1}$.

4. Conclusion

Electrochemical studies revealed that 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one is electro active as it undergoes oxidation and reduction processes at a carbon paste electrode. Compound shows one electron irreversible reduction. Diffusion coefficient D_{ex} for compound 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one is 5.985×10^{-2} cm2 s$^{-1}$.

Drug-DNA complex interaction has been investigated by UV-Visible spectrosocopy. All spectral data and figure indicate the well binding interaction between DNA and drug complexes. In the drug 6-bromo-3-[N-(3-chloro-benzylidene)-hydrazino]-chromene-2-one bind to DNA via intercalation mode involving outside edge stacking interactions with the oxygen atom of the phosphate backbone of DNA with binding constant $K_D = 4.174 \times 10^4$ M$^{-1}$ respectively show hypochromism.

Acknowledgement

I express my thanks to Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (M.P.) and the MPOST Bhopal, for the financial support in the form of research fellowship.

References

