Composite Ion-Exchangers Based On Flexible Resin Containing Zirconium Hydrophosphate for Electromembrane Separation

Y.S. Dzyazko1,*, Y.M. Volfkovich2, L.N. Ponomaryova1, V.E. Sosenkin2, V.V. Trachevskii3, V.N. Belyakov1

1V.I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, Acad. Palladin ave. 32/34, Kyiv-142, 03680, Ukraine.
2A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the RAS, Leninskiy pr, 31, Moscow, 119071, Russia.
3G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Pr. acad. Vernaskii 36, Kyiv-142, 03680, Ukraine.

GRAPHICAL ABSTRACT

Ion Transport Through Organic-Inorganic Ion-Exchangers Affected by Single Nanoparticles of Zirconium Hydrophosphate

ARTICLE DETAILS

Article history:
Received 25 October 2015
Accepted 02 November 2015
Available online 12 November 2015

Keywords:
Electrodeionization
Electrodialysis
Organic-Inorganic Ion-Exchanger
Zirconium Phosphate
Standard Contact Porosimetry

ABSTRACT

Organic-inorganic materials based on flexible gel-like cation exchange resin were obtained by means of its modification with zirconium hydrophosphate. The samples were investigated using transmission and scanning electron microscopy, standard contact porosimetry as well as impedance spectroscopy. Single nanoparticles (4-10 nm) and their aggregates were found inside the polymer. Evolution of porous structure of the polymer constituent affected by the inorganic particles is considered, the modifier has been shown to decrease the content of free water in the polymer, to increase swelling pressure, which is determined according to Gregor model, and to provide a growth of ion-exchange capacity in a comparison with the pristine resin (from 0.56 up to 2.3 mmol cm⁻³). The inorganic constituent formally behaves like a cross-linking agent. However, increasing of the modifier amount causes a growth of electrical conductivity of the composites from 0.2 to 0.8 Ohm⁻¹·m⁻¹. The ion-exchanger with a maximal content of zirconium phosphate (67%) was applied to removal of Cd²⁺ ions from a solution containing also hardness ions and organics. The composite provide continuity of the process, the removal degree of toxic ions reaches 96-98%. Redistribution of the nanoparticles in the polymer, which is affected by electric field, has been found.

1. Introduction

In opposition to electrodialysis, electrodeionization (EDI) involves not only membranes, but also granulated ion-exchange resins between them: cation-exchanger, anion-exchanger or their mixture [1-3], particularly layered bed [4]. Simultaneous ion exchange and transport of sorbed species through the ion-exchanger bed and membranes provide continuity of the EDI process. This hybrid technique is applied to weakly selective cation-exchangers for removal of heavy metal ions from diluted solutions by means of ion exchange [10, 24-28].

transport. The EDI method allows one to solve different tasks, such as treatment of reverse osmosis permeate [4], production of ultrapure water [5], removal of Al³⁺ [6-12], HCrO₄⁻ [13-16], Cu²⁺ [17-19] ions from electroplating wastes, recovery of Co⁴⁺ [20] and Cr³⁺ [21] ions from water produced by of nuclear stations, F⁻ anions removal from tap water [22], water softening [23] etc.

Removal of heavy metal ions from diluted solutions is complicated by low selectivity of ion exchange resins and their poisoning with organics [6]. In order to overcome these difficulties, glass-like hydrogel of zirconium hydrophosphate (ZHP) has been proposed [8]. A disadvantage of this ion-exchanger is gradual fragmentation of grains.

Organic-inorganic ion-exchangers are widely used for removal of heavy metal ions from diluted solutions by means of ion exchange [10, 24-28].
The material based on flexible resin was also applied to the EDI process of Ni²⁺ removal from a combining weakly-concentrated solution [10], the composite consisting of ammonium molyldiphosphate and polyacrylonitrile has been proposed for EDI of Ce³⁺-containing solutions [21]. However, the process efficiency was rather low. In order to overcome this disadvantage, functional properties of the ion exchanger, namely electrical conductivity and ion exchange capacity, have to be improved.

The properties of the composites are known to be determined by location of nanoparticles in one or other pores of the polymer matrix [26, 28]. Porous structure of swollen ion-exchange polymer includes several types of pores [29-31]. Gel fields of the polymer are riddled with nanosized pores so called “transport pores” (clusters and narrower channels between them), where functional groups are placed. These pores are responsible for ion mobility. Non-aggregated nanoparticles in clusters and channels enhance the transport. Hydrophobic links of the polymer chains are located in voids between gel fields, a size of which is more than 20 nm. The largest pores are the structure defects.

The aim of the investigation is a purposeful control of a state of the inorganic constituent in ion exchange polymer in order to provide maximal content of non-aggregated nanoparticles in transport pores. The purpose of the study is also to establish the influence of the particles on the polymer structure and functional properties of the composites. At last, testing of the materials in the EDI process is necessary.

Flexible gel-like cation exchange resin has been chosen as a polymer matrix, since it can be used successfully for removal of metal ions by means of EDI [6]. Macroporous and rather rigid ion exchange polymers were used earlier for composite preparation, mainly aggregated nanoparticles were found for these materials [24, 25, 28]. In this study, ZHP was used as a modifier, since it provides selectivity of the composites [10, 24, 26, 28] due to formation of complexes of sorbed ions with functional groups of this ion-exchanger [2, 33].

The composites were tested for removal of Cd²⁺ ions from multicomponent solution containing also hardness ions and organics. The equipment, which contains details with cadmium coatings, is attractive for automation. The composites tested are known to be determined by location of nanoparticles in transport pores.

2. Experimental Methods

2.1 Ion-Exchangers

Such strongly acidic cation exchanger as Dowex WX-2 (Dow Chemical), which contains 2 % DVB, was used as a polymer matrix. Further the resin is marked as CR.

The modification procedure involved: (i) swelling a weighted amount of the resin in deionized water; (ii) impregnation with a 1 M ZrOCl₂ solution for 24 h at 353 K followed by separation of solid and liquid by means of centrifugation; (iii) treatment with a 1 M H₃PO₄ solution at 273 K and phase separation; washing with deionized water up to pH 7 of the effluent; (iv) drying under vacuum at 343 K followed by a treatment with ultrasonic bath at 30 kHz using a Bandelin ultrasonic bath (Bandelin); (v) drying in a desiccator over CaCl₂ at 293 K down to constant mass. The differences of this technique from [10, 26] is higher temperature of impregnation with a zirconium-containing solution and lower temperature of ZHP precipitation.

The (i)-(v) procedures were repeated several times. After each modification cycle, a weighted sample was taken for investigations. The samples, which were researched in detail, were marked as CR-ZHP-1 (one modification cycle) and CR-ZHP-7 (seven cycles). The CR-ZHP-0 sample modified once was used for comparison.

2.2 Visualization of Inorganic Particles

Pretreatment of the ion-exchangers involved their grinding followed by ultrasonic treatment. TEM images were obtained by means of a JEM JEM-1230 transmission electron microscope (Jeol). A JEOL FSM 6700 F-scanning electron microscope (Jeol) was also used for ZHP visualization. Preliminarily an ultrathin layer of platinum was deposited onto the particles at 3 Pa using an JEOL JFC-1600 Auto fine coater (Jeol).

2.3 Porosity Measurements

Standard contact porosimetry (SCP) [35-38], which has been recognized by the IUPAC [35], was applied to investigation. Preliminary the samples were vacuumed at 353 K, weighted and put into a paper tablet.

The tablet was placed between two ceramic standards, the set was impregnated with deionized water at 353 K. The contact between the investigated and standard samples was provided at 0.1 kPa. During drying at 293 K, the set was disassembled periodically, each its element was weighted. Based on the experimental results of mass loss, the pore size distributions as well as isotherms of water adsorption were plotted taking into consideration a known contribution of the paper.

Archimedes (pincometer) method [39] was also used to determine total porosity and particle density.

2.4 Chemical Composition

The content of phosphorus and zirconium inside the samples was determined with powder analysis using an X-Supreme8000 XRF (X-ray fluorescence) spectrometer (Oxford Instruments). NMR ³¹P spectra of the samples, which had been inserted into the ampule with a diameter of 5 mm, were obtained by means of AVANCE 400 spectrometer (Bruker) using single-pulse technique under the accumulation mode at 162.29 MHz. Chemical shift has been determined relatively to 85 % H₃PO₄.

2.5 Functional Properties

Total ion-exchange capacity of the materials towards Na⁺ (A) was determined by their treatment with a 0.1 M NaOH solution followed by washing with deionized water, regeneration and flame-photometric analysis of the effluent [10].

Electrical conductivity of H-forms of the ion-exchangers was measured at 298 K similarly to [40]. In preliminary additionally sorbed electrolyte was removed from the solid by multiple washing with deionized water. The sample was placed into a prismatic cell supplied by platinum electrodes (an area of each electrode was 2 cm², a distance between them was 1 cm). The cell with the ion-exchanger was filled with deionized water. The admittance spectra within the interval of 10⁻⁵⁻¹⁰⁻⁴ Hz were obtained using an Autolab impedance system. The dc conductivity of the bed was determined from the wide plateau of real part of admittance similarly to [41].

2.6 Electrodeionization

The experimental set-up [7, 13] involved a three-compartment electrodialysis cell, 3 independent liquid lines, power supplier and measurement instrumentation (Geolab Universal 32). The distance between the membranes (central compartment) where the ion-exchanger was placed, was as follows: an effective membrane area was 16 cm², a distance between the membranes was 1 cm, a height of the ion-exchanger bed was 16 cm. A top of the cell was opened to provide a possibility of bed compaction in order to avoid its fluidization.

The electrode compartments were separated from the centre chamber with homogenous Nafton 117 cation-exchange membranes (DuPont/A). A 1 M H₂SO₄ solution circulated though the anode compartment, the cathode camera was filled with a 1 M HCl solution. A volume of both catholyte and anolyte was 200 cm³.

Tap water containing 1.2 mmol dm⁻³ Ca²⁺, 0.5 mmol dm⁻³ Mg²⁺ and also organics (mainly humates) was used for preparation of a Cd²⁺-containing solution (0.5 mmol dm⁻³ Cd²⁺) after preliminary acidification down to pH 2.5. The solution passed through the central compartment according to “once through” scheme with a flow velocity of 60 cm min⁻¹. The process was performed at 8 V, probes (2 cm²) from the cathode and central compartments were analyzed with an atomic absorption method using a Pye Unicam SP9 spectrophotometer.

The EDI processes have been performed for 20 h, in the case of the CR-ZHP-7 sample the process was repeated 5 times. After each experiment, the ion-exchanger was removed from the cell, washed with a 1 M H₂SO₄ solution and deionized water, further this ion-exchanger was used again. Particle density of the samples was determined with Archimedes method after each series of EDI-regeneration. After the fifth experiment, the sample (marked as CR-ZHP-7-EDI) was investigated using a SCP technique.

The CR-ZHP-7 ion-exchanger (1 g) was also treated with a Cd²⁺-containing solution of abovementioned composition (1 dm³), regenerated, further its particle density was determined. This procedure (blank expression) was repeated 5 times.

3. Results and Discussion

3.1 ZHP Precipitation inside Ion Exchange Polymer

Zirconium ions forms polymerized hydroxocomplexes in aqueous media, such as [Zr(OH)(H₂O)]₄₊ₓ⁻ (where x is the integer), their composition strongly depends on the solution pH [42]. During impregnation of the resin with a highly concentrated ZrOCl₂ solution, a part of species is sorbed according to ion exchange mechanism. The ion-
exchanger contains also both cations (zirconium hydroxocomplexes as well as H⁺) and anions (Cl⁻), which are sorbed additionally.

Polymer chains of the pristine resin are visible in Fig. 1a. Regarding the organic-inorganic ion-exchanger modified at low temperature, the chains are invisible, however, particles of the modifier can be observed: non-aggregated spherical nanoparticles (4-10 nm) and their aggregates of irregular shape (Fig. 1b). Single nanoparticles are evidently located in transport pores and stabilized by their walls [26]. Large aggregates of micron size are formed inside structure defects (Fig. 1c,d). The sample, which was treated with phosphoric acid at higher temperature, shows mainly aggregated nanoparticles (Fig. 1e).

The smallest ZHP particles are dissolved during precipitation in accordance with Ostwald-Freundlich equation [43]:

$$\ln \frac{C}{C_s} = \frac{\beta v_a \sigma \cos \phi}{RTr}$$ \hspace{1cm} (1)

Here C is the compound concentration, C_s is the concentration of saturated solution, β is the shape factor of particles, v_a is the molar volume of the compounds, σ is the surface tension of the solvent, ϕ is the wetting angle, R is the gas constant, T is the temperature, r is the particle radius. In the case of hydrophilic compounds like ZHP, $\cos \phi$ is assumed to be equal 1.

Since the C and C_s values for insoluble ZHP are extremely low, a size of the dissolved particles is affected mainly by temperature conditions. Decreasing in the temperature prevents dissolution of the smallest particles. In the case of higher temperature, dissolution of small particles and reprecipitation of larger formation occur. In other words, the control of temperature allows us to obtain ZHP particles in one or the other pores of the polymer matrix.

Impregnation of the resin with a ZrOCl₂ solution at elevated temperature leads to an increase of the modifier content in the polymer and results in a growth of ion exchange capacity per volume unit (A_e) of the composites (Fig. 2). This is evidently due to higher content of zirconium-containing species sorbed according to non-exchange mechanism. Inconsiderable growth of the ZHP content after the fifth modification cycle is probably due to formation of secondary porosity inside the polymer matrix. Small pores between the nanoparticles in the aggregates can be a barrier against additionally sorbed electrolyte, when the resin is treated with ZrOCl₂ or H₃PO₄ solutions. Increasing in mass fraction (m) of incorporated ZHP causes an increment of ion exchange capacity. The A_e-m plots show 2 regions: slow growth (due to considerable swelling of the composite [26, 28]) and rapid increase (due to decrease of swelling).

The samples, in which the modifier was precipitated at 273 K, are characterized by lower content of phosphorus in a comparison with the CR-ZHP-0 composite (Table 1). Moreover, increasing of ZHP content causes a decrease of molar ratio of P:Zr due to effect of secondary porosity against H₃PO₄ as mentioned above. Larger exchange capacity of the CR-ZHP-1-CR-ZHP-7 samples in a comparison with the resins obtained under room temperature is caused by larger content of the modifier.

Fig. 2 Ion exchange capacity of the composites per volume unit as a function of mass fraction of ZHP. Legend shows temperature of the modifier precipitation. The curve for the samples obtained under room temperature was plotted according to data [10].

The samples, in which the modifier was precipitated at 273 K, are characterized by lower content of phosphorus in a comparison with the CR-ZHP-0 composite (Table 1). Moreover, increasing of ZHP content causes a decrease of molar ratio of P:Zr due to effect of secondary porosity against H₃PO₄ as mentioned above. Larger exchange capacity of the CR-ZHP-1-CR-ZHP-7 samples in a comparison with the resins obtained under room temperature is caused by larger content of the modifier.

Table 1 Characteristics of ion-exchangers

<table>
<thead>
<tr>
<th>Sample</th>
<th>Molar ratio of P:Zr</th>
<th>Particle density, kg m⁻³</th>
<th>A_e, mmol g⁻¹</th>
<th>Pore volume, cm³ g⁻¹</th>
<th>$A_{e, n}$, mmol g⁻¹</th>
<th>$P/P_{0,**}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>-</td>
<td>1750</td>
<td>4.51</td>
<td>0.92</td>
<td>0.39</td>
<td>0.20</td>
</tr>
<tr>
<td>CR-ZHP-0</td>
<td>1.60:1</td>
<td>1960</td>
<td>1.44</td>
<td>0.69</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>CR-ZHP-1</td>
<td>1.52:1</td>
<td>2060</td>
<td>1.93</td>
<td>0.79</td>
<td>1.35</td>
<td>0.94</td>
</tr>
<tr>
<td>CR-ZHP-7</td>
<td>1.35:1</td>
<td>2530</td>
<td>4.29</td>
<td>0.78</td>
<td>29</td>
<td>0.94</td>
</tr>
<tr>
<td>CR-ZHP-7-ED</td>
<td>1.26:1</td>
<td>2120</td>
<td>2.30</td>
<td>0.77</td>
<td>24</td>
<td>0.21</td>
</tr>
</tbody>
</table>

*Before sharp build-up of the isotherm
**$A_{e,n} = 0.7$ cm²g⁻¹
***$m = 0.28$ [10].

NMR ³¹P spectroscopy was used for analysis of composition of the inorganic ion-exchanger. Typical spectrum for ZHP, which is incorporated into the polymer, is given in Fig. 3. The spectrum demonstrates intensive signal at -36 ppm, a shoulder in the region of weak field is also visible. As known for crystalline modifications of ZHP, the signal in a strong field is attributed to -O₃HPO₄ groups (α-modification), the signal in a weak field is due to -OPO₄H₂ groups (β-modification) [44]. In our case, hydrophosphate groups dominate, the signal caused by dihydrophosphate groups appears as a shoulder.

Fig. 1 Microphotographs of the CR (a) CR-ZHP-1 (b, c), CR-ZHP-7 (d) and CR-ZHP-0 (d) samples. TEM images (a, b, d, e) show non-aggregated nanoparticles of ZHP and their small aggregates. Large aggregates are seen in SEM (c) and TEM (d) images.

Fig. 3 NMR ³¹P spectra of the CR-ZHP-7 sample

3.2 Porosity of the Polymer Constituent and Isotherms of Water Adsorption

Since the conditions of thermal pre-treatment before the porosity measurements cannot provide removal of bonded water from ZHP surface, the results are related mainly to the polymer constituent. Particle density of the ion-exchangers (p_b) was calculated as [39]:

$$\varepsilon = 1 - \frac{P_0}{P_p}$$ \hspace{1cm} (2)
where \(\varepsilon \) is the porosity, \(\rho_0 \) is the bulk density. Insertion of ZHP predictably causes an increase of particle density (Table 1).

The exchange capacity per mass unit (\(A_H \)) of the composites is lower compared with CR. It is evidently due to blockage of transport pores with the particles. As a result, functional groups are partially unavailable for ion exchange.

In opposite to well-known method of water adsorption isotherms [45], which is widely used for investigation of ion-exchange polymers, the SCP technique allows us investigate porous structure in a wide diapason of pore size. Nitrogen adsorption and mercury porosimetry are not able to give exact information about swollen polymers, since these methods can be applied only to dry materials.

Isotherms of water adsorption (\(A_{H,O} \)) for the pristine ion-exchanger are typical for the materials containing a wide spectrum of pores. A long plateau at low \(P/P_s \) values is attributed to micropores (here \(P \) is the pressure of water vapour, \(P_s \) is the pressure of saturated vapour), semi-waves (mesopores) and extended vertical region at \(P/P_s \to 1 \) related to meso- and macropores (Fig. 4). At the same time, the isotherms for the modified ion-exchangers show mainly micropores. Meso- and macropores are less expressed in a comparison with the pristine resin.

Horizontal branches of the isotherms are attributed to adsorbate monolayer. An amount of water molecules (n) in hydrate shells of counter-ions (H\(^+\)) of -SO\(_4\)H groups was calculated as:

\[
n = \frac{A_{H,O}}{A_H V_{H,O}}
\]

(3)

for the pristine ion-exchanger and:

\[
n = \frac{A_{H,O}}{A_H V_{H,O}(1-m)}
\]

(4)

for the composites. Here \(V_{H,O} \) is the molar volume of water, \(A_H \) is the exchange capacity of the pristine polymer. The highest \(n \) value has been found for the pristine ion-exchanger (Table 1). In general, modification results in a reduction of this parameter. However, increase of ZHP content causes an increment of the \(n \) value (compare CR-ZHP-0 and CR-ZHP-7).

Let us consider thermodynamic aspects of swelling. Transport pores of the ion-exchangers contain high amount of counter-ions (H\(^+\)), which tend to solvation. It is possible to assume, that there is a solution of concentrated electrolyte inside transport pores, the “solution” is able to be diluted. This assumption is the closest to reality, when the ion-exchanger is in a contact with a weakly concentrated solution or deionized water. In this case, diffusion parts of intraporous double electric layers are overlapped in clusters. Thus, transport pores are filled with a “solution” completely. In macroscopic models, the tendency of the “solution” to be diluted is taken into consideration by a difference between osmotic pressures of liquids inside and outside granules (Gregor model [45]). It has been postulated, that the osmotic pressure inside ion-exchanger is higher, when the sample is equilibrated with a solvent or its vapour. A difference between the pressures is the swelling pressure, \(\pi \). This value has been suggested for the ion-exchangers, which change their volume freely. According to the Gregor model, the \(\pi \) magnitude has not to be related to the swelling pressure of gel in a volume bounded with rigid walls.

When water content in the ion-exchanger increases, osmotic pressure decreases. At the same time, pressure from a side of the polymer net grows. These pressures become equal under equilibrium conditions. The interrelation between the \(P/P_s \), value and swelling pressure, which is defined from the Gregor model, is written as [45]:

\[
a_{H,O} = \frac{RT \ln \frac{P}{P_s}}{\pi}
\]

(5)

Here \(a_{H,O} \) is the activity of water in ion-exchanger, which is associated with free water. For instance, at \(a_{H,O} = 0.7 \) mmol g\(^{-1}\), the \(P/P_s \) value decreases in the order: CR-ZHP-0 > CR-ZHP-1 > CR-ZHP-7 > CR. This order can be caused by a decrease of swelling pressure or water activity.

3.3 Pore Size Distributions

Insertions of Fig. 5 illustrate integral pore size distributions, namely dependencies of pore volume (V) on logarithm of pore radius (r). Differential distributions are given in Fig. 5. An area of each peak corresponds to a volume of one or another type of pores.

Regarding the pristine ion-exchanger, several peaks are observed (Fig. 5a). The broad maximum at \(\log r = 0.3 \) (nm) evidently corresponds to channels, the narrower peak (\(\log r = 0.7 \) (nm)) is attributed to clusters, the most sharp maximum at \(\log r = 0.7 \) (nm) is caused by voids between gel fields. The maxima at \(\log r = 2.0 \) and 3.6 (nm) are due to structure defects. The peak at \(\log r = 4.0 \) (nm) is attributed to voids between the ion-exchanger grains, these pores will be outside our attention.

The pore size distributions for the CR-ZHP-0 sample demonstrates a shift of peaks, which are attributed to channels and clusters, towards lower \(\log r \) values (to \(\log r = 0.2 \) and 0.5 (nm) respectively). A size of pores, which are free from functional groups, increases (\(\log r = 1.1 \) (nm)) for voids between gel fields, \(\log r = 3.1 \) and 3.7 (nm) for structure defects.

Increase of fraction of non-aggregated nanoparticles (CR-ZHP-1) causes a shift of the peaks, which are related to transport pores and voids between gel fields, towards a region of higher \(\log r \) values. These peaks become narrower. The composite shows broader peaks of structure defects, but a size of these pores remains without changes.

Regarding the CR-ZHP-7 sample, a size of channels decreases, clusters become larger in a comparison with CR-ZHP-1. Moreover, these peaks are split. No change of a size of voids between gel fields has been found, though their volume increases. At last, the peaks, which correspond to structure defects, become too broad and practically unexpressed.

Pores, a radius of which is less than 1.5 nm (\(\log r = 0.17 \) (nm)), contain only bonded water; larger pores contain both bonded and free water [30]. A volume of larger pores (>1.5 (nm)) reflects water activity in the ion-exchanger. Fig. 6 illustrates the volume of these pores for different ion-exchangers (for equilibrium state) as a function of \(P/P_s \) value at \(a_{H,O} = 0.7 \) mmol g\(^{-1}\).

![Fig. 4 Isotherms of water adsorption for the pristine resin (a) and composites (b). Insertion of ZHP into the polymer deteriorates water adsorption.](image)

Fig. 4 Isotherms of water adsorption for the pristine resin (a) and composites (b). Insertion of ZHP into the polymer deteriorates water adsorption.

Cite this Article as: Y.S. Diyazko, Y.M. Yaflikov, L.M. Ponomaevych, V.E. Sosenko, V.V. Trachevskii, V.N. Belyakov, Composite ion-exchangers based on flexible resin containing zirconium hydrophosphate for electromembrane separation, J. Nanosci. Tech. 21(1) (2016) 43–49.
In a comparison with the pristine resin, the composites are characterized by lower volume of pores containing free water. Thus, larger P/P_0 values for the organic inorganic ion-exchanger can be due to lower $a_{H,0}$ magnitude and higher swelling pressure (φ_0 formula 5).

Among the CR-ZHP-0, CR-ZHP-1 and CR-ZHP-7 composites, no considerable change of the P/P_0 ratio and volume of pores containing free water has been found. Thus, the swelling pressure for these samples is practically similar even under equilibrium conditions ($\varphi_{H,0} = -RT\ln a_{H,0}$ [45]). However, a difference between the amounts of water molecules of counter-ions is sufficient (Table 1). Moreover, a change of pore size is also observed (Eq. 5).

This is evidently due to various swelling pressure in different pores, which is caused by a presence of ZHP. Indeed, a change of amount of osmotically active species (counter-ions of hydrophosphate groups) in one or the other pores affects swelling pressure inside them. If the main amount of ZHP is localized in structure defects, they are able to squeeze the transport pores and pores between gel fields (transition from CR to CR-ZHP-0). Lower n value can be due to partial inaccessibility of transport pores for water adsorption and ion exchange (decrease of ion exchange capacity per mass unit, Table 1). As a result, the A_n magnitude, which is used for calculations, is overestimated.

Preferable deposition of ZHP inside clusters and voids between gel fields (transition from CR-ZHP-0 to CR-ZHP-1 and CR-ZHP-7) evidently causes higher swelling pressure inside these pores than that in structure defects. Changes of swelling pressure inside different pores are evidently compensated [similarity of the P/P_0 ratios and free water content]. A part of transport pores become available for water adsorption and ion exchange (increase on the A_n and n values).

3.4 Electrical Conductivity

The impedance measurements were carried out for a packed bed. Thus, the resistance value, which is obtained by this manner, includes also the resistance of the grain boundaries. In order to this, the conductivity is evidently less than those for “monoliths”. However, the data reflect a relative change of conductivity affected by the inorganic modifier.

Fig. 7 illustrates the dependence of ion-exchanger conductivity (κ) on concentration of free mobile charge (H^+), i.e. on ion-exchange capacity. In general, modification leads to the conductivity growth. The samples, in which ZHP was precipitated at low temperature, are characterized by higher conductivity, than those modified under room temperature.

3.5 Electrodeionization

Fig. 8 illustrates the amount of Cd$^{2+}$ ions in the cathode compartment (n_c) as a function of time (t). As seen, the rate of ion transport through the ion-exchanger bed and membrane decreases in the range CR-ZHP-7 $< CR$-ZHP-1 $< CR$-ZHP-0. Among the composites, the order coincides to conductivity (Fig. 7). The pristine resin shows higher rate of ion transport in a comparison with the composites containing low amount of the modifier. This is evidently due to inhibitory effect of ZHP, which squeeze transport pores of the polymer. Moreover, movement of species through clusters and channels can be complicated by additional interaction with functional groups of ZHP. The highest rate of ion transport, which is observed for CR-ZHP-7, is probably due to high amount of Cd$^{2+}$ species sorbed by non-aggregated nanoparticles.

In the case of the CR-ZHP-7 sample, the rate of ion transport was found to be constant. Thus, a flux of Cd$^{2+}$ ions (J) calculated as

$$J = \frac{1}{t} \int dn_c dt$$

(A, is the effective area of the membranes) remains without changes within a wide range of time. No sufficient change of flux is observed from cycle to cycle of the EDI processes followed by chemical regeneration (Fig. 9).

The residual concentration of Cd$^{2+}$ species in the solution at the cell outlet was 1-2 mg dm$^{-3}$. Thus, the removal degree reached 96-98%. Hardness ions are removed simultaneously, however, the relation of their summary molar concentration to the Cd$^{2+}$ content was $7A$. In the case of initial solution, this ratio is 3.4.

3.6 Porous Structure of Ion-Exchanger after ED Process

Fig 10 illustrates differential pore size distributions for the CR-ZHP-7 ED ion exchanger. In a comparison with CR-ZHP-7, the maximum related to channels is shifted towards higher r values (from log $r = 0.04$ (nm) to 0.15 (nm)) and becomes more irregular: the peak broadens up to log $r = 0.5$ (nm). Simultaneously, sizes of clusters and voids between gel fields decreases (from log $r = 0.77$ (nm) to 0.44 (nm)) and from log $r = 1.2$ to 1 (nm) respectively). The peaks, which are related to structure defects, become more expressed. In general, the pore size distribution looks similarly to that for CR-ZHP-1, except the region of channels.
Slightly higher content of free water for CR-ZHP-7-ED (lower water activity) as well as much lower P/P$_0$ ratio (Fig. 6) indicates lower swelling pressure for this sample in a comparison with CR-ZHP-7. Higher amount of water molecules in hydrate shells of counter-ions (Table 1) is due to shrinkage of small pores. Slightly lower P-z values, which has been found for CR-ZHP-7-ED. Probably the aggregates in structure defects contain higher amount of phosphorus in a comparison with non-aggregated nanoparticles inside transport pores and voids between gel fields. Thus, destruction of the aggregates following by partial removal of the produced fragments from the ion-exchanger causes a decrease in phosphorus content. Indeed, TEM image of the CR-ZHP-7-ED sample shows smaller large of aggregates (compare Fig. 1a and Fig. 1d). At the same time, the image of higher resolution is practically similar to that for the CR-ZHP-7-resin (compare Fig. 1b and 1b).

4. Conclusion

Impregnation of ion exchange resin with a ZrOCl$_2$ solution under elevated temperature allows us to obtain high amount of ZHP due to precipitation from additionally sorbed electrolyte. At the same time, a decreasing in temperature, at which precipitation occurs, promotes formation of non-aggregated nanoparticles in transport pores of the ion exchange polymer.

Insertion of the inorganic constituent into the flexible resin leads to transformation of porous structure of the polymer, this is probably due to different swelling pressure in transport and non-transport pores. From a formal point of view, modification could be considered as an increasing of the cross-linking agent, since the component deonstrate more considerable swelling pressure and ion exchange capacity per volume unit in a comparison with the pristine resin. In opposite to cross-linking agent like DVB, ZHP enhances electrical conductivity of the resin. This is evidently due to participation of counter-ions of hydrophosphate groups in ion transport. Only nanoparticles in clusters contribute to the conductivity, the aggregates, which are located inside transport pores, behave as inert filler.

The composite with a maximal ZHP content provides a constancy of ion flux towards concentration compartment and high removal degree of Cd$^{2+}$ ions during EDI process. Ca$^{2+}$ and Mg$^{2+}$ ions are removed simultaneously, however, they dominate in the effluent. For deeper deionization, particularly for the most complete removal of Cd$^{2+}$ ions, reverse osmosis is recommended.

Partial release of ZHP from the ion-exchanger and redistribution of the particles inside the polymer occur during the first 40 h of the EDI process. However, no change of the composite conductivity have been found. This indicates destruction of aggregates and stability of nanoparticles in transport pores. Electrochemical method can be recommended for removal of aggregates from ion exchange material, such as organic-inorganic membranes.

Acknowledgements

The work was supported by projects within the framework of programs supported by the National Academy of Science of Ukraine "Fundamental problems of creation of new materials for chemical industry" (grant N 49/12).

References

