Low Temperature Synthesis of Tin Oxide Nano Crystallites: Optical and Dielectric Properties

P. Prabakaran, M. Victor Antony Raj, J. Madhavan*

Department of Physics, Loyola College, Chennai – 600 034, Tamil Nadu, India.

ABSTRACT

Tin oxide nanoparticles were successfully synthesized through hydrothermal method at low temperature using hydrazine hydrate. The effect of concentration on the morphology and structure of SnO2 were comprehensively studied using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The electronic band structure is analyzed with the interaction of UV radiation. The polarization mechanism in accordance with an applied electric field was examined. Important dielectric parameters like dielectric constant, dielectric loss and ac conductivity are discussed.

1. Introduction

Recently one of important research fields is nanoscience which contains emerging technologies with interdisciplinary fields like physics, chemistry, biology, material science, and medicine [1]. For various industrial applications such as photo-catalyst [2], semiconductor [3] and gas sensor [4], metal oxide nanostructures have been extensively explored. Some prominent metal oxides semiconductor nanomaterials, such as SnO2, In2O3 and SnO2 have attracted considerable attention because of their unique properties and potential application in various nanodevices. Among them, tin oxide (SnO2) is considered to be one of the most promising candidate for gas sensor as well as semiconductor due to their inherent advantages such as a wide band gap (3.6 eV at 300 K), a large exciton binding energy (130 meV) and a high electron mobility (100-200 cm²/V·s) [5].

More recently, SnO2 nanocrystalline material has received a growing attention due to its excellent properties arising out of large surface-to-volume ratio quantum confinement effect, etc. [6-8]. SnO2 nanoparticle has several morphologies like nanorods, nanowires, nanobelts, nanotubes, hollow spheres, mesoporous structure. Various techniques have been developed to form nanocrystalline SnO2 and to improve the property of these nanostructures. The properties of SnO2 nanostructure can be enhanced by a number of ways like impurity adding (doping) [9]. Coating with surfactants [10] and annealing [11]. The final properties of doped SnO2 nanoparticles are linked to both compositional and processing method. Tin oxide nanomaterials have been prepared by various methods such as sol-gel, hydrothermal, co-precipitation, electro-deposition, microwave technique, solvothermal, sonochemical, mechanochemical etc. [12]. The hydrothermal method has been considered as a versatile route for the synthesis of SnO2 nanostructures with controlled size and shape [13].

In this work, we focus the structural and morphological analysis of SnO2 nanoparticles prepared by hydrothermal method and the energy band structure is studied by the UV interaction. A detailed dielectric spectroscopy is also exemplified.

2. Experimental Methods

In the preparation of tin oxide or stannic oxide, tin chloride pentahydrate (SnCl4.5H2O) and (NH4)2H2O hydrazine hydrate were used as precursors. SnCl4.5H2O was dissolved in 100 mL of double distilled water, then 1.28 g of NH4H2O hydrazine hydrate (0.01 M) was added with stirring then it immediately reacted with SnCl4 in the solution to form a slurry-like white precipitate. Then solution was transferred to autoclave at 160 °C for 24 hours and powder was transferred to the centrifuge tubes in order to carry the centrifuge process, maintained at 4000 rpm. After the centrifuge process the solution was transferred to the crucible for 90 °C at 15 hours in furnace in order to make it dry and get the final products.

3. Results and Discussion

3.1 XRD Analysis

The XRD pattern is shown in Fig. 1. The peaks at 20 values of 26.0°, 34.2°, 37.9°, 51.8° and 65.4° can be associated with (1 1 0), (1 0 1), (2 1 1) and (3 0 1) respectively. The observed peaks are in well agreement with standard X-ray pattern of SnO2 and confirmed to have a tetragonal structure [14]. The average crystal size (D) was estimated using the Scherrer’s equation as follows

\[D = \frac{K\lambda}{\beta \cos \theta} \]

where D is the crystallite size, \(\lambda \) is the X-ray wavelength, \(\beta \) is the full width at half maximum of the diffraction peak, \(K \) is a constant (0.94) and \(\theta \) is the Bragg diffraction angle of the diffraction peaks. The average particle size is found to be 8 nm.

Fig. 1 XRD pattern of the sample SnO2.
3.2 Morphological Analysis

Scanning Electron Microscopy (SEM) is a vital characterization tool for directly imaging nano materials to obtain quantitative measures of grain size, size distribution, and morphology. Fig. 2 shows the unique morphology of the as-synthesized SnO$_2$ nano spheres. SEM Micrographs at 1 μm offer better outstanding about passivation of SnO$_2$ nano particles growth aspect. Images showed the developed shape of the composite and exhibit uniform particles with diameter of 100-120 nm. Further the closest views shows the absence of agglomeration to a large extent in the particles synthesized via hydrothermal method.

![Fig. 2 SEM Micrographs of as-synthesized SnO$_2$](image)

3.3. UV Spectrum Analysis

The optical transmittance of SnO$_2$ nanoparticles synthesized by hydrothermal method is measured using VARIAN CARY 5000 spectrophotometer in the range of 200 to 900 nm and is shown in Fig. 3. The spectrum shows a large transparency window between 400 nm and 800 nm and has a sharp absorption edge at about 295 nm. The cut-off behavior at the blue end of the spectrum is determined by direct electronic transitions from valence band to the conduction band. The absorption edge of SnO$_2$ nano particles possess a blue shift with compared to its bulk material. By combining the transmission with sample thickness, we were able to calculate absorption co-efficient and thus band gap. The calculated E$_g$ value is 4.2 eV which showed that optical band gap widening occurs due to the reduction in particles’ size.

![Fig. 3 Reflectance spectra of SnO$_2$ nanoparticles](image)

3.4. Dielectric Measurements

The prepared SnO$_2$ nanoparticles got pelletized of area 1.29 cm2 having silver coating on the opposite faces was introduced between two copper electrodes and then connected to HIOKI LCR impedance analyzer for dielectric measurements. The dielectric constant of the sample is calculated using the relation $\varepsilon_r = C_d/C_0 A$, where the SnO$_2$ pellet acts as a dielectric with the ε_0, absolute permittivity, C is the capacitance, d is the thickness and A is the area. Fig. 4 shows the variation of dielectric constant of SnO$_2$ nanoparticles in accordance with frequency. From the figure one can easily examine the relative permittivity is higher at lower frequencies and decreases with increase in frequency. The decrement in the value is shown in the frequency window of 50 Hz to 1 kHz and it remains almost constant while we are moving to higher frequencies. The value of dielectric constant is 140 at 50 Hz and it reduces up to 34 at 1 kHz frequency region. At low frequencies, all the four polarizations are active. The orientation effect can sometimes be seen in some materials even up to 10^{12} Hz. Ionic and electronic polarizations always exist below 10^{11} Hz. It is well known that there are two dielectric polarization mechanisms that contribute to the enhanced dielectric behavior of nanomaterials: rotation direction polarization (RDP) process and space charge polarization (SCP) process. We suggest that both RDP and SCP process contribute to the enhancement of dielectric response of the SnO$_2$. As for the typical n-type semiconductor, there are a large amount of oxygen vacancies acting as shallow donors in SnO$_2$, resulting in a lot of oxygen vacancies existing in the interfaces of SnO$_2$ nanoparticles. Positive oxygen vacancies together with negative oxygen ions give a large amount of dipole moments. These dipole moments will rotate in an external electric field, which leads to the rotation direction polarization occurring in the interfaces of n-type SnO$_2$ nano particles. On the other hand, SCP process can also occur in the sample. Generally, nano structure materials have about 10^{19} interfaces/cm2, much more than those of bulk solids.

![Fig. 4 The variation of dielectric constant with frequency](image)

Negative and positive space in interfaces move towards positive and negative poles of the electric field respectively. As they are trapped by defects, dipole moments will form and SCP process will occur in the sample. Because the volume fraction of the interfaces of nano-size sample is larger than that of bulk materials, SCP is stronger than that in the bulk materials. Thus, ε_r of the SnO$_2$ nanoparticles is higher than that of bulk. Nevertheless, in the high frequency range, dielectric response of RDP and SCP cannot keep up with the electrical field frequency variation, resulting in the rapid decrease of ε_r in SnO$_2$ nanoparticles.

Fig. 5 shows the variation of dielectric loss of SnO$_2$ nanoparticles as a function of frequency. The term, dielectric loss is associated with the energy loss while the electric field passes through the sample. The trend in the variations of both dielectric constant and dielectric loss as a function of frequency is the same. In the lower frequency region, dielectric loss shows larger values due to the loss associated with dipolar movement. Moving to higher frequencies, dipoles cannot align in accordance with electric flux reversals so that less energy loss. The ac conductivity of SnO$_2$ is calculated using the relation: $\sigma_{ac} = 2\pi f \varepsilon_0 \varepsilon_r \tan\delta$, Where f is the frequency of applied field, $\tan\delta$ is loss tangent (ratio of imaginary part of dielectric permittivity to real part of dielectric permittivity) available from dielectric measurement, ε_r is the relative permittivity of the sample and ε_0 is the dielectric permittivity of vacuum (8.854×10^{-12} F/m). The alternating current conductivity is directly proportional to frequency and is well examined with Fig. 6.

![Fig. 5 The variation of dielectric loss with frequency](image)

![Fig. 6 Variation of ac conductivity with electric field frequency](image)
4. Conclusion

SnO₂ nanoparticles have been successfully synthesized by a simple hydrothermal method using hydrazine hydrate. X-ray spectra indicated that the preparation method was faithful and the crystalline structure was observed to be tetragonal. The surface morphology was investigated by SEM. The dielectric properties of the as-synthesized particles are analyzed. The optical band gap of the SnO₂ was found to be 4.2 eV.

References