Fabrication and Characterization of Dye-Sensitized Solar Cell using Chemically Grown ZnS Nanoparticles

Kamal Bera*, Satyajit Saha, Paresh Chandra Jana

Department of Physics and Technophysics, Vidyasagar University, Paschim Medinipur – 721 102, West Bengal, India.

ARTICLE DETAILS

Article history:
Received 21 August 2018
Accepted 29 August 2018
Available online 30 August 2018

Keywords:
ZnS Nanoparticle
Device Fabrication
Optical Absorption
DSSC

ABSTRACT

In this work, we have fabricated dye-sensitized solar cell (DSSC) based on chemically grown ZnS nanoparticles with three different source of dye namely Gerbera jamesonii, Rosa indica and Acalypha wilkesiana leaves extract. Anthocyanin, a kind of natural dye found in the leaves of plants and flowers was used as photosensitizers in preparing dye-sensitized solar cell. The optical properties of anthocyanin present in three dyes were also studied. Morphological properties have been studied by atomic force microscopy on ZnS film as well as on ZnS film with dye. The current-voltage characteristics of the dye-sensitized solar cell had been studied in light condition. The DSSC is characterized by the measurement of open circuit voltage, short circuit current density; efficiency and fill factor. The efficiency of three dye solar cell is different and it is maximum for Acalypha wilkesiana leaves extract dye.

1. Introduction

The energy crisis in the current world has led the researcher to find renewable energy sources. And the finding is nonconventional sources like solar energy. The solar energy can be used by the photovoltaic device. The current research strategy is to fabricate low-cost photovoltaic devices and increase its efficiency [1-8]. The semiconducting nanoparticles are most hopeful material for application in the solar cell due to their exciting structural, optical and electronic properties which differ from bulk [9-11].

Zinc sulfide, a group II-VI semiconductor is most frequently used as phosphor material [12]. It has tremendous applications in the field of electronics, photonics devices such as light emitting diodes [13], solar cells [14], electroluminescence [15], photo detectors [16] and biosensors [17]. Dye-sensitized solar cells (DSSC) are rising as a low-cost photovoltaic device [18]. Such a low-cost photovoltaic device are the future of large power production from non-conventional energy sources. DSSC converts the photon from solar energy to electricity. Different biological strategies have been taken to increase the efficiency of the device. DSSC have four components as follows: (1) solar energy absorber containing the electrode dye-sensitized layer (2) the transparent conductive oxide layer that facilitates charge transfer from the electrode layer (3) graphite paint on ITO glass act as counter electrode (4) the redox electrolyte layer for reducing the level of energy supplied from the dye molecules [4, 5, 19-25]. DSSC composed of nano-ZnS layer acting as the electron carrier and the organic dye layer as an electron generator, which will regain to its original state by taking electron donated by the electrolyte solution.

We have adopted a simple chemical reduction method to grow ZnS nanoparticles [26]. The DSSC has been fabricated using ZnS nanoparticles. The natural dyes were extracted from Gerbera jamesonii, Rosa indica and Acalypha wilkesiana leaves of plant. The value of fill factor and efficiency of the ZnS based DSSC device are determined. The used method is highly cost-effective and free from environmental hazards.

2. Experimental Methods

2.1 Preparation of ZnS Nanoparticle

The ZnS nanoparticles have been synthesized using a cost-effective chemical reduction technique [26]. Zinc chloride, sulfur powder and sodium borohydride were used to grow ZnS nanoparticles at room temperature as reported elsewhere [27]. The synthesized nanoparticles are structurally and optically characterized using transmission electron microscope, x-ray diffraction, UV-Vis absorption spectroscopy, photoluminescence spectroscopy.

2.2 Preparation of Bio Dye Sensitizer

Fresh red flower of Gerbera jamesonii, Rosa indica and red leaves of Acalypha wilkesiana plant are collected in the morning from Vidyasagar University campus, West Bengal, India. The collected material washed in running tap water and then with distilled water for several times. Then cleaned material placed in a vacuum furnace for 3 hours at 50°C to remove the moisture. 5 g of each dried sample is separately crushed with a porcelain mortar and pestle. Then each crushed material is dissolved in 20 mL ethanol without exposure of light. After extraction, dye solutions are taken by filtering extraction. Finally pure and clear dye solution is made for use as sensizers in sensitizing ZnS electrode.

2.3 Device Fabrication

First two indium doped tin oxide (ITO) glass plates are cleaned with acetone in an ultrasonicator. After ultrasonication ITO coated glass are dried. ZnS nanoparticle of 1 g weight is mixed with 1 mL acetic acid (pH-3-4) and grinded in mortar for making paste. The lump free pestle of ZnS nanoparticle is now prepared. Teflon tap was warped on glass plate to control film size and making electrical contact. Now ZnS paste is deposited on the conducting surface of ITO glass uniformly by doctor blade method. The coated films are dried at room temperature for 30 minutes then fired for 30 min at 100°C in a vacuum furnace to increase the internal voids of film organization and enhance its absorption performance. The resulting film thickness was about 1 mm of width and 1 cm² of area. After high-temperature annealing the film was cooled down to room temperature. The ZnS film is now dipped in previously prepared bio dyes. To make complete adsorption of dye, the film was dipped for 6 hours of time.

Graphite paint is made on the conducting surface of other ITO glass, which act as cathode. A redox electrolyte is prepared using 0.5 mol of KI, 0.05 mol of I₂, and 0.5 mol of acetic acid.

The two prepared electrodes of ITO coated glass are then sandwiched between the two glasses to serve as a conductor to electrically connect the two electrodes. The schematic diagram of the dye sensitized solar cell mechanism is displayed in Fig. 1.

*Corresponding Author: kamal.bhy@gmail.com (Kamal Bera)

https://doi.org/10.30799/jnst.155.18040506
2455-0191 / JACS Directory©2018. All Rights Reserved
2.4 Characterization

The structural characterization of the as prepared samples is performed using transmission electron microscope (TEM) and X-ray diffraction (XRD). The optical absorption study of these dyes was recorded in the range of 200 nm–900 nm using a Shimadzu Pharmaspec 1700 UV–VIS spectrophotometer. Atomic force microscopy study has been done on ZnS film as well as on ZnS film with adsorbing dye. Anthocyanin acts as sensitizer in the fabricated device which is collected from red flower of Gerbera jamesonii, Rosa indica and red leaves of Acalypha wilkesiana plant. The performance of prepared DSSCs was characterized by measuring the current density (J)–voltage (V) curves under illumination with white light (100 mW cm$^{-2}$). The short circuit current density (JSC), open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η) are measured from the J–V graphs. All the measurement was done with the help of a potentiometer and digital multimeters.

3. Results and Discussion

3.1 Structural Study

The TEM image of as synthesized ZnS nanoparticles is shown in Fig. 2. The grown nanoparticles are agglomerated and the average size of the nanoparticles is found to be 10 nm.

![TEM Image and SAED pattern of as prepared nanoparticles](image)

The XRD pattern of ZnS nanoparticles is shown in Fig. 3. The XRD pattern of the as prepared samples shows that the as grown ZnS nanoparticles are in cubic phase.

![XRD pattern of as synthesized ZnS nanoparticles](image)

3.2 Optical Absorption Study

The optical absorbance spectra of the prepared ZnS nanoparticles and different bio dyes are shown in Figs. 4 and 5. The corresponding band gap of ZnS nanoparticle are also calculated inset of Fig. 4 using the $(\alpha h\nu)^{2}$ vs $h\nu$ plot, where α is absorption coefficient, h is plank constant and ν is the frequency of light.

![Optical absorption spectrum of ZnS nanoparticles and band gap determining (inset) plot](image)

Among three bio dyes, Acalypha wilkesiana gives maximum absorbance on 550 nm. Whereas Gerbera jamesonii gives minimum absorbance. There were other absorption peaks close to 450 nm corresponding to different dyes. So optical absorbance spectra provide light absorption information between the dye ground state and excited states.

![Optical absorbance spectra of three natural dye](image)

It is clear that maximum absorption occurs in the visible region. The absorption spectrum depends on anthocyanin content in each natural dye [28]. Thus anthocyanin content in Acalypha wilkesiana leaves extract is maximum whereas it is minimum in Gerbera jamesonii.

![Atomic force microscopy of pure ZnS and ZnS with adsorbed different plant extract dye](image)
3.3 Atomic Force Microscopy Study

The surface morphology of the dye adsorbed ZnS nanoparticles film and only nanoparticles film was analyzed using atomic force microscopy (AFM). The roughness of the plain ZnS film is found to be high. Roughness is reduced for dye adsorbed ZnS film shown in Fig. 6. This is probably due to the filling up of porosity in presence of dye. This is evident from 3D images of AFM.

Table 1 Summarization of roughness

<table>
<thead>
<tr>
<th>Sample</th>
<th>Roughness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure ZnS</td>
<td>41.4</td>
</tr>
<tr>
<td>ZnS with adsorbed Gerbera jamesonii plant extract dye</td>
<td>34.5</td>
</tr>
<tr>
<td>ZnS with adsorbed Rosa indica plant extract dye</td>
<td>20.3</td>
</tr>
<tr>
<td>ZnS with adsorbed Acalypha wilkesiana plant extract dye</td>
<td>5.94</td>
</tr>
</tbody>
</table>

3.4 Current density (J) – Voltage (V) Characteristics

The electrical characteristics of the dye sensitized solar cells were investigated under light conditions.

![Fig. 7 Current density vs Voltage graph](image)

Fig. 7 shows the measured J-V characteristics graph under illumination. From the figure we measure open circuit voltage and short circuit current. Fill factor and efficiency of the photovoltaic devices are determined from J-V characteristics. Fill factor and efficiency can be calculated using the following relation,

\[FF = \frac{V_{max} \cdot J_{max}}{V_{oc} \cdot J_{sc}} \]

\[\eta = \frac{J_{sc} \cdot V_{oc} \cdot FF}{P_{in}} \]

where \(V_{max} \), \(J_{max} \) are voltage and current density at maximum power. \(V_{oc}, J_{sc} \) are open circuit voltage and short circuit current respectively, \(P_{in} \) is the incident power and \(\eta \) is the efficiency.

![Fig. 8 P-V characteristics graph](image)

Fig. 8 shows the power density (P) - voltage (V) curves corresponding to each J-V curve of different prepared DSSCs. The P-V curves give the value of maximum current density and maximum voltage at the maximum power point.

![Table 2 Different parameters of dye sensitized solar cell obtained from J-V and P-V characteristics curve](table)

<table>
<thead>
<tr>
<th>Dye solution</th>
<th>Photograph</th>
<th>(V_{max}) (mV)</th>
<th>(J_{max}) ((\mu A/cm^2))</th>
<th>(V_{oc}) (mV)</th>
<th>(J_{sc}) ((\mu A/cm^2))</th>
<th>Fill Factor (FF)</th>
<th>Efficiency (% X10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acalypha wilkesiana</td>
<td></td>
<td>153</td>
<td>293</td>
<td>25</td>
<td>0.401037</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Rosa Indica</td>
<td></td>
<td>10.2</td>
<td>165</td>
<td>17</td>
<td>0.392727</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Gerbera jamesonii</td>
<td></td>
<td>6.4</td>
<td>130</td>
<td>11.7</td>
<td>0.353451</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

The J-V plot shows maximum power output in DSSC of Acalypha wilkesiana plant extract dye. This is possibly due to increased count of anthocyanin in Acalypha wilkesiana leaves extract dye compared to the other two dyes. It is shown that the efficiency decreases with the increase of roughness of ZnS with adsorbed dye. The efficiency of the natural dye is lower than the other commercial chemical dyes like ruthenium [(Ru) dyes i.e. N3, N719 and Z907] [29]. Anthocyanins mainly have -OH and -O group and have no carboxyl group to chemically bind with the ZnS nanoparticle [30, 31]. Hence, the anthocyanin dye greatly improved the optical absorbance of the ZnS nanoparticle.

4. Conclusion

ZnS nanoparticles are synthesized by a simple chemical reduction route for the fabrication of dye sensitized solar cell. Anthocyanin from natural dye, are used as a photosensitizer. ZnS nanoparticle used as photoanode and graphite paint is used as cathode. The efficiency of the different device is possibly low due to presence of anthocyanin as dye which does not bind well with ZnS. Whereas the difference in efficiency are occur due to difference in light absorption seen from optical absorption study. It is clearly seen that with increase in film roughness the DSSC efficiency decreases. This may be due to low absorption of light from high roughness surface. The scattering of light increases for higher roughness surface.

Acknowledgments

Authors would like to thank Department of Science and Technology and University Grants Commission of Government of India for their constant support through Fund for Improvement of Science and Technology infrastructure in universities and higher educational institutions (FIST) and Special Assistance Program (SAP) to Department of Physics of Vidyasagar University.

References
A comparative study on a biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene

