
K.V. Divya Lakshmi, T. Siva Rao*
Department of Inorganic and Analytical Chemistry, Andhra University, Visakhapatnam – 530 003, Andhra Pradesh, India.

ABSTRACT

Nickel and sulfur co-doped TiO2 photocatalyst were prepared by using sol-gel method with dopants precursors of nickel nitrate and thiourea. Prepared samples were characterized by XRD, UV-Vis-DRS, TEM, BET, FT-IR and SEM-EDAX. These characterization and experimental results revealed that there is a formation of anatase phase, decreased band gap 2.62 eV for NIST-2, small particle size 7.3 nm and high surface area 142.62 m2/g. The FT-IR frequency shift for Ti-O-Ti was observed from 569 cm-1 to 460-560 cm-1 for co-doped TiO2. The efficiency of photocatalytic and antibacterial was evaluated by degradation of Orange-II dye and Escherichia coli (MTCC-443) respectively. The complete degradation of Orange-II was achieved in 120 min at optimum reaction parameters for NIST-2 at pH 3, catalyst dosage 100 mg/L and initial dye concentration at 10 mg/L.

1. Introduction

The evaluation of several hazardous dyes from many textile industries in to the effluents is a major source for pollution of water bodies. These organic compounds are persistent in to the environment it can directly impact the health of ecosystems and present a threat to human beings due to the contamination of surface water and ground water sources [1]. Azo dyes are the largest group of dyes used for dyeing of cotton fibers in textile industries. They are not readily degradable and typically completely removable from water by conventional chemical wastewater treatments [2, 3]. Orange-II is widely used in dyeing of textile paper, leather, food industry, cosmetics [2] and thus found in waste water of the related industries. Orange-II mainly affects the liver and decreases the red blood corpocells. They are not readily decompose and not completely removable from waste water [4]. Polluted water contains harmful pathogenic bacteria and fungi these are contaminated in to the water sources. Escherichia coli (E. coli) is a gram –ve bacteria it causes urinary tract infections, and diarrhea. A wide range of methods has been developed for the removal of synthetic dyes from wastewaters to decrease their impact on the environment. In heterogeneous photo catalysis TiO2 is one of the most efficient semiconductor, considerable environmental applications and it shows photocatalytic removal of dyes and certain pathogenic bacteria from waste water under UV-light irradiation, because of its strong oxidizing power, non-toxicity, long-term stability against photo and chemical corrosion, cost effective and ability to mineralize refractory organic pollutants under ambient pressure and temperature [5]. To enhance the quantum efficiency of TiO2 in visible region there is a need to decrease a band gap and electron hole (e-h+) recombination by doping of TiO2 with metal and non-metal elements [6, 7]. In this present work we aimed to synthesize Ni and S co-doped TiO2 using sol-gel method. Ni is preferred because it creates a new energy level above the valance band of TiO2. It causes narrowing the band gap and active in visible light [8,9]. The doping of S replaces the lattice titania into TiO2, matrix [10, 11]. The main advantage of sol-gel method using catalytic material having excellent control over the product properties and accessible in all key processing steps of gel aging, drying heat treatment [12]. Hence Ni and S were selected based on the above advantages for the synthesis of co-doped TiO2 nano material.

2. Experimental Methods

2.1 Materials

All the chemicals used in the synthesis process were reagent grade and the solutions were prepared with double distilled water without further purification. N-butylheptaorthotitanate (Ti(OBu)4), manganese nitrate [Ni(NO3)2].6H2O and thiourea are obtained from E-Merck (Germany) were used as a precursors of titanium, nickel, sulfur for preparing undoped TiO2 and co-doped TiO2 catalysts respectively. Orange-II dye was used as a model dye pollutant obtained from High media, India. Ethanol and nitric acid were obtained from E-Merck (India) used as a solvent in the reaction procedure.

2.2 Preparation of Ni and S Co-Doped TiO2

Nickel and sulfur co-doped nano titania (0.75 Wt% of Ni and 0.25 Wt % of S) was synthesized by sol-gel method. 40 mL of ethanol along with the 20 mL of n-Butylheptaorthotitanate taken in a beaker-1 and acidified with 3.2 mL of nitric acid and continuous stirring for 30 min; this solution is considered as solution-1. 40 mL of ethanol and required weight percentage amount of dopants and 7.2 mL of water taken in a beaker-2 and continues stirring for 30 min; this solution is considered as solution-2. Then the solution-2 was added solution-1 drop wise slowly and stirred until turbidity obtained and kept the turbid solution aside for aging 48 h at room temperature to obtain a gel. Dried the gel at 70 °C in hot air oven and ground for fine crystalline powder. This powder was calcined at 450 °C for about 5 h in a muffle furnace. The same procedure was adopted for the preparation of undoped TiO2 without addition of dopants.

2.3 Characterization of Catalyst

The crystalline structure of photocatalyst were determined by powder X-ray diffraction (XRD) spectra taken (model ultima IV Rigaku) using anode Cu-WL 1 (λ=1.5406nm) radiation with a nickel filter. The applied current and voltage were 40 mA and 40 kV respectively. The average crystallite size of anatase was determined according to the Scherrer’s equation using (FWHM) data of the selected peak. The surface area and porosity measurements were carried out with a micrometrics Gemini VII surface area analyzer. FT-IR spectra of the samples were recorded on a FT-IR spectrometer (Nicolet Avatar 360). The Diffuse reflectance spectra (DRS) were recorded with a Shimadzu 3600 UV-Visible- NIR Spectrophotometer equipped with an integrating sphere diffuse reflectance accessory, using BaSO4 as reference scatter. Powder samples were loaded into a quartz cell and spectra were recorded in the range of

Keywords: TiO2, Sol-Gel Method, Orange-II, Photocatalytically Active
200-900 nm. The nitrogen adsorption/desorption isotherms were recorded 2-3 times to obtain reproducible results and reported by BJH surface/volume mesopore analysis. The micro pore volume was calculated using the Frenkel-Halsey-Hill isotherm equation. Each sample was degassed at 300 °C for 2 h. The size and shape of the nano particles were recorded with TEM measurements using JED/L EM 2100, operated at 200 kV. The morphology and elemental composition of the catalyst was characterized using scanning electron microscope (SEM) (ZEISS-SUPRA 55 VP) equipped with an energy dispersive X-ray (EDS) spectrophotometer and operated at 20 kV. The extent of Orange-II degradation was monitored using UV-Vis spectrophotometer (Shimadzu 1601).

2.4 Photo Catalytic Activity of the Catalyst-Degradation Orange-II Dye

The photocatalytic activity of the synthesized catalyst, Ni and S co-doped nano titania was carried out by degradation of Orange-II dye under visible light irradiation in the photocatalytic reactor [13]. A high pressure 400 W (35,000 lm) mercury vapour lamp with UV filter (Oriel, 51472) was used as a visible light irradiation source. The degradation procedure was performed by taking 100 mL of Orange-II dye solution of required concentration (1-10 mg/L) containing sufficient amount of the catalyst in a 150 mL Pyrex glass vessel under continuous stirring placed about 20 cm away from the light source. The running water was circulated around the sample container to filter IR radiation to maintain constant solution temperature in a pyrex glass reaction vessel. The solution was stirred in dark for 30 min to attain adsorption – desorption equilibrium of Orange-II dye on the catalyst surface. After visible light illumination small aliquots of sample were collected from the reaction mixture using Multipore syringe (0.45 µm) at different intervals of time to observe the change in Orange-II dye concentration by measuring the absorbance at 487 nm using UV-visible (Milton Roy Spectrodi 1201) spectrophotometer. A pH meter (Elco Digital pH meter model 111E, El) was used for adjusting and investigation of pH variation during the degradation process. The pH of the dye solutions was adjusted prior to irradiation by addition of 0.1 N NaOH / 0.1 N HCl to get required pH [30]. The percent of degradation of Orange-II dye was calculated from the following equation.

\[
\% \text{ of Degradation} = \frac{A_S - A_t}{A_S} \times 100
\]

where, \(A_s \) is initial absorbance of dye solution before degradation and \(A_t \) is absorbance of dye solution at time t.

2.5 Antibacterial Activity

Antibacterial activity study of 0.75 Wt % of Ni and 0.25 Wt % S (NIST-2) was carried out by Agar-Well diffusion method [14] against bacterial strains namely and Gram negative bacteria Escherichia coli (MTCC-443). Nutrient Agar (High media-India) dissolved in water was distributed in 100 mL conical flask and sterilized in an autoclave at 121 °C 15 lbp for 15 min. After autoclaved the media, poured sterilized petri plates were prepared and swabbed using L-shaped glass rod with 100 µL of 24 h mature broth culture of bacterial strain. The wells were made by sterile cork-borer. Wells are created in the petri plates and different concentrations of TiO2 co-doped (NIST-2) nano particles are injected (200 µg/mL, 300 µg/mL and 400 µg/mL). The TiO2 nano particles were dispersed in sterile water and it was used as a negative control and simultaneously the standard Antibiotic Chloramphenicol (100 µg/mL) as positive control were tested against the bacterial pathogen, then the plates were incubated 24 h at 37 °C. In the zone of inhibition of every well measured in mm.

3. Results and Discussion

3.1 X-Ray Diffraction Studies (XRD)

The XRD pattern of Ni and S co-doped TiO2 along with undoped TiO2 showed in Fig. 1. From figure the diffraction peak showed that anatase phase at 28=-25.3°. The diffraction peaks at 20 values 25.3°, 38.3°, 48.2°, 54.7° are corresponding to planes of (100), (004), (200) and (211) respectively. This is maybe indicated that Ni and S incorporated in to TiO2 lattice by substituting Ti and O respectively. The radius of Ni is 0.72 Å and Ti is 0.68 Å, hence Ni can easily replace some Ti4+ ions in TiO2 lattice [15] and also sulfur as S2− ion which can replace the lattice Ti4+ into TiO2 matrix [16] in which ionic radius is 1.370 Å and oxygen ionic radius is 1.34 Å. The average crystallite size of undoped and co-doped samples were calculated using Scherrer’s equation the values are given in Table 1. The average crystallite sizes of undoped and co-doped samples TiO2 samples 13.5 and 5.5 nm. It is observed that the crystallite size decreases due to increasing the metal ion content in to TiO2 lattice crystal strain increases grain growth decreases and hence, the particle size decreases [17].

3.2 UV-Vis-Diffuse Reflectance Spectra (UV-Vis-DRS)

The UV-Vis-Diffuse reflectance spectra of undoped and co-doped TiO2 are showed in Fig. 2. The co-doping of Ni and S in to TiO2 lattice extended the strong absorption shift towards visible region. This is may be due to the Ni2+ and S2− deflected the formation of extra energy level near the CB and VB edge and instigates a prodigious narrowing of bandgap [8]. The bandgap of the samples was calculated from reflectance spectra [F(R)] using Kubelka-Munk formalism and Tauc plot method [18] is shown in Fig. 3. The band gap values of undoped and co-doped 3.2 eV and 2.62 eV. It is observed that the co-doped sample had reduced band gap when compared to undoped TiO2 (Table 1) and active in visible region.

3.3 Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET)

The TEM images of co-doped TiO2 is showed in Fig. 4. It is indicated that the co-doped TiO2 having less particle size with spherical shape with depicts the selected area diffraction (SAED) pattern of the NIST-2, it is clearly indicated well defined concentric rings which were due to the diffraction from the (101), (004), (200), (211) planes of the anatase TiO2. The average particle size calculated from Gaussian fitting of size histogram (Fig. 4) [19] and found to be 7.5 nm.

![Fig. 1 The XRD pattern of the synthesized undoped and co-doped TiO2](image)

![Fig. 2 The DRS spectra of undoped and co-doped (NIST-2) TiO2](image)

![Fig. 3 Plot of transformed Kubelka-Munk [F(R)hv^2] versus hv for co-doped (NIST-2) and undoped TiO2](image)
The BET surface area of synthesized catalysts of undoped and co-doped (NST-2) TiO$_2$ nanocatalysts are 76.368 m2/g and 142.156 m2/g. The pore size and volumes are given in Table 1. These results confirmed that NIST-2 showed high surface area compared to undoped TiO$_2$.

![Fig. 4 The TEM images of a) co-doped TiO$_2$; b) size histogram and Gaussian fitting of NIST-2](image)

Table 1 Crystallite size (XRD), band gap (UV-Vis-DRS) and BET surface area

<table>
<thead>
<tr>
<th>S.No</th>
<th>Catalyst</th>
<th>Crystallite size (nm)</th>
<th>Band gap (eV)</th>
<th>BET surface area analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface area (m2/g)</td>
</tr>
<tr>
<td>1</td>
<td>NIST-2</td>
<td>5.5</td>
<td>2.62</td>
<td>142.156</td>
</tr>
<tr>
<td>2</td>
<td>Undoped TiO$_2$</td>
<td>13.3</td>
<td>3.2</td>
<td>76.368</td>
</tr>
</tbody>
</table>

3.4 Fourier Transform–Infra Red Spectroscopy (FT-IR)

The FT-IR spectra for undoped and co-doped (NST-2) TiO$_2$ were presented in Fig. 5. The stretching vibrations of OH belongs to Ti-OH on the surface and bending vibrations of adsorbed H-OH molecule are appeared at 3012 cm$^{-1}$, 3464 cm$^{-1}$, 1620 cm$^{-1}$ and 1635 cm$^{-1}$ [21]. The stretching vibrations of Ti-O-Ti band in undoped TiO$_2$ located at 569 cm$^{-1}$. After co-doping of Ni and S in to TiO$_2$ lattice the stretching vibrations of skeletal Ti-O-Ti shifted to 460 cm$^{-1}$, 560 cm$^{-1}$ and 1064 cm$^{-1}$ [22, 17] indicated that Ni and S co-doped in to TiO$_2$ lattice by substituting Ti and O respectively.

![Fig. 5 a) FT-IR spectrum of undoped TiO$_2$ and b) co-doped TiO$_2$.](image)

3.5 Scanning Electron Microscopy and Energy Dispersive X-Ray Photo Electron Spectroscopy (SEM-EDX)

The surface morphology of synthesized co-doped TiO$_2$ (NIST-2) nano particles have been investigated by SEM and EDS. The results are given in Fig. 6. From the figures indicated that the samples exhibited small particles with agglomerated and spherical shape with smooth morphology. The EDX spectrum (Fig. 6c) NIST-2 indicated that the constituent elements are present in the catalysts samples. It is concluded that Ni and S are successfully incorporated in to TiO$_2$ lattice.

3.6 Evaluation of Photocatalytic Activity of Ni and S Co-Doped TiO$_2$ by Degradation of Orange II under Visible Light

The optimum reaction conditions are attained by varying the reaction parameters, such as dopant concentration, effect of pH, catalyst dosage and initial dye concentration. The rate of degradation of orange II formed during the reaction course was calculated by multiplying the slope of each curve with 2.303.

3.6.1 Effect of Dopant Concentration on the Degradation of Orange II

The rate of degradation of orange II has been quantified by the measurement of orange II absorbance and the results are presented in Fig. 7. It can be observed that the photocatalytic performance of TiO$_2$ was higher for all co-doped TiO$_2$ photocatalysts than undoped TiO$_2$. But, NIST-2 co-doped TiO$_2$ shown highest percentage degradation under visible light irradiation. The result shows that the rate of degradation is higher in (NIST-2) than that of other catalysts. This is may be due to the dopant concentration increases particle size decreases and surface area increases leads to higher rate of photocatalytic degradation.

![Fig. 7 Effect of dopant concentration on degradation of orange II, pH of 3, catalyst dosage of 100 mg/L.](image)

3.6.2 Effect of pH

The sample exhibiting best photocatalytic performance (NIST-2) was selected as further experiments were conducted with it. To find out the optimum pH at constant dye concentration (10 mg/L) and catalyst weight (100 mg/L) experiments were done at different pH values. The experiment results given in Fig. 8 and the rate of degradation depicted in figure.

![Fig. 8 The effect of pH on degradation of orange II, catalyst dosage of 100 mg/L.](image)

From the results indicated that at pH-3 the rate of degradation is very high. This is may be interpreted that at low pH positive holes acts as the major oxidant species. Hence, at acidic pH the adsorption process was favoured by the electrostatic attraction between the positively charged
surface of the catalyst and dye molecules [22]. Further increasing the pH value the rate of degradation decreases due to columbic repulsion between the catalyst and dye molecules it causes decrease the rate of degradation would enhance degradation percentage and it reaches a maximum at pH 3.

3.6.3 Effect of Catalyst Dosage

Experiments were carried out to achieve an optimum catalyst dosage by varying the amount of the selected co-doped photocatalyst from 50 mg/L to 200 mg/L other parameters kept constant. The effect of the co-doped photocatalyst dose on percentage degradation of orange II with respect to time can be observed from Fig. 9. The percentage of degradation of increases with increase of photocatalyst loading up to 100 mg/L and then decreases. The increased amount of photocatalyst increases the quantity of absorption of photons increases the degradation rate increases. The concentration is higher than 100 mg/L catalysts, by collision between active molecules and ground state molecules of co-doped TiO$_2$ and also turbidity of the solution increases as concentration increases this restricts the penetration of light for activating the deactivated particles of co-doped TiO$_2$ [23]. This causes the decreases in rate of degradation of orange-II dye.

![Fig. 9](image9.png)

Fig. 9 Effect of catalyst dosage on the degradation of OR by NIST-2 co-doped TiO$_2$: here pH-3 and OR = 10 mg/L

3.6.4 Effect of Initial Dye Concentration

The role of initial concentration of a dye on the degradation rate was carried out at constant catalyst dose (100 mg/L) and at pH-3. The degradation rate values and percentage rate degradation has been presented in Fig. 10. Here the influence of initial concentration of a dye on the rate of degradation was studied with different concentration (5 mg/L – 20 mg/L) of orange II dye solution at a fixed dosage of selected co-doped photocatalyst using a pH of solution 3. The photocatalytic degradation increases with an increase in the concentration of dye up to 10 mg/L. Because, as the concentration of the dye increases, more dye molecules will be available for excitation and energy transfer. But beyond the optimum concentrations, the dye molecules starts covering the surface of photocatalyst from light intensity [24]. Hence, there is a decrease in photocatalytic activity beyond the 10 mg/L dye concentration.

![Fig. 10](image10.png)

Fig. 10 Effect of initial concentration of the dye on the rate of degradation of dye (pH = 3 and catalyst dosage= 100 mg/L)

3.7 Antibacterial Studies

The antibacterial activity of TiO$_2$ nano particles were carried out by agar-well diffusion method against Escherichia coli (MTCC-443) and different concentration of co-doped TiO$_2$: (NIST-2) nano particles were taken in different wells in a petri dish with a concentration ranging from 200 µg/mL, 300 µg/mL, 400 µg/mL and chloramphenicol (control). The anti-bacterial petri plates are shown in Fig. 11. The bacterial growth of zone diameter was determined and presented in Table 2. The activity results were showed that (400 µg/mL) is best concentration for the co-doped TiO$_2$: for the zone of inhibition of both the bacteria and also very nearer to the standard values, therefore the co-doped TiO$_2$ nano particles exhibiting better antibacterial activity. This inhibition may be due to the electron hole which is forms in valance band of TiO$_2$: by irradiation of catalyst with visible light. During the visible light this e$^{-}$+h$^{+}$ hole acts as a strong oxidizing agent could degrade the protein coat of the bacteria leads to the inhibition of the growth of the organism.

![Fig. 11](image11.png)

Fig. 11 Zone of inhibition of a) Undoped TiO$_2$: b) co-doped (NIST-2) TiO$_2$

<p>| Table 2 The zone of inhibition of co-doped TiO$_2$: nano particles (NIST-2) against Escherichia coli (MTCC-443) |</p>
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Catalyst</th>
<th>200 µg/mL</th>
<th>300 µg/mL</th>
<th>400 µg/mL</th>
<th>Standard 100 µg/mL (Chloramphenicol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10.3</td>
<td>12.2</td>
<td>15.2</td>
<td>23.1</td>
</tr>
<tr>
<td>1</td>
<td>NIST-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Undoped TiO$_2$:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

4. Conclusion

Ni and S co-doped TiO$_2$ were successfully synthesized by sol-gel method. The synthesized catalysts characterised by various analytical techniques. All the co-doped samples showed anastase phase. The doping of Ni inhibits the electron/hole recombination and acts as charge carrier during photocatalytic degradation under visible light irradiation. Sulfur causes the shift in absorbance band of TiO$_2$: from UV to visible region. 0.75 wt% Ni and 0.25 wt% S co-doped TiO$_2$: exhibited small particle size, high surface area gives high photocatalytic activity compared to undoped TiO$_2$: Finally the optimum reaction parameters were established and Orange-II dye (10 mg/L) was successfully degraded by 100 mg/L co-doped catalyst (NIST-2) at pH-3 in 120 min and also NIST-2 showed strong antibacterial activity against *Escherichia coli* (MTCC-443). It may be concluded that NIST-2 co-doped TiO$_2$: acts as better photocatalytic activity and good antibacterial agent.

Acknowledgements

Prof. T. Siva Rao acknowledges to SE/EMEQ-400/2014 project for the financial assistance to carryout research work. K.V. Divya Lakshmi thankful to the University Grants Commission (UGC) for providing BSR fellowship.

References

