Synthesis and Characterization of ZrO$_2$ Nanoparticles using Microwave Assisted Method and Its Antimicrobial Activity

S. Baby Asha1, D. Muthuraj1*, E. Kumar2, V. Veeraputhiran3

1PG and Research Department of Physics, The M.D.T. Hindu College, Tirunelveli – 627 010, Tamilnadu, India.
2Department of Physics, School of Science, Tamil Nadu Open University, Chennai – 600 015, Tamilnadu, India.
3R & D Department, Alba Industries Pvt. Ltd., Thoothukudi – 628 103, Tamilnadu, India.

Keywords:
Zirconium Dioxide
Microwave Method
Antimicrobial Activity

1. Introduction
The ZrO$_2$ nanoparticle is very interesting and valuable material for its fundamental application based properties. The synthesized metal oxide nanoparticles vary in physical, chemical, and morphological properties and are being used in various fields as they have various applications [1]. Thermodynamically most stable form of ZrO$_2$ is monoclinic structure. Pure zirconia has high number of oxygen vacancies defects predominantly. The nano sized zirconia owing to large surface area has high number of oxygen vacancies at grain surface [2]. Therefore solid ZrO$_2$ can conduct electricity up to some extent and it is considered as p-type semiconductor. The band gap value of ZrO$_2$ depends upon synthesis temperature, particle size and crystalline structure. Numerous chemical methods have been reported to synthesize pure ZrO$_2$, such as thermal decomposition [3], sol-gel methods [4], and hydrothermal techniques [5]. The as-prepared nanoparticles were extensively characterized using X-ray diffraction, FT-IR, UV, SEM and antimicrobial activity studies.

2. Experimental Methods
2.1 Materials
All the chemicals were used as analytical grade without any further purification. Zirconium oxy nitrate and ammonia were used to prepare the nanoparticles of this work. Double distilled deionized water used in this investigation. Disc diffusion method has employed with gram negative bacteria (Pseudomas aeruginosa and Escherichia coli) and gram positive bacteria (Staphylococcus aureus and Bacillus subtilis).

2.2 Synthesis
All chemicals were analytical grade (AR) and used without further purification. Zirconium oxychloride and NaOH were used for the preparation of the zirconium oxide nanoparticle. In the present work 8.6 gm of zirconium oxychloride (ZrO$_2$H$_2$O) was added with deionized water and stirred for homogeneous solution, during stirring NaOH solution was added till the pH value becomes 12. After that white sol has been formed. This solution kept at microwave oven with minimum temperature at 6 minute. The prepared powder filtered with deionized water and dried at 50 °C for 1 hour. This powder calcinated 600 °C for 4 hour.

2.3 Instrumentation
Powder X-ray diffraction pattern of the nanoparticles was obtained using a Rigaku Ultima IV powder X-ray diffractometer. The sample was scanned over the required range for 2θ values. The FTIR spectrum of the sample was recorded within the wavenumbers from 4000 cm$^{-1}$ to 400 cm$^{-1}$ by using Perkin Elmer Frontier FTIR. Optical properties were examined by UV-Vis spectrophotometer (UV-1800 PC Shimadzu). The antimicrobial activity was determined by disc diffusion method.

3. Results and Discussion
3.1 X-Ray Diffraction Method
Zirconium dioxide was synthesized by microwave assisted solution technique. The powder XRD pattern of the prepared ZrO$_2$ nanoparticles is shown in Fig. 1 which shows a strong diffraction peaks along 28.28°, 24.16°, 30.32°, 34.2°, 35.4°, 50.19°, 40.9°, 45.6°, 60.3°[6], and 65.8° with h k l values. The ZrO$_2$ nanoparticles show a tetragonal phase from diffraction peaks at 30.32°, 34.2°, 50.19°, and 60.3°.

![Fig. 1 XRD pattern ZrO$_2$ nanoparticles](image-url)

From the Fig. 1, the diffraction bands were confirmed by crystalline nature. The crystalline nature was confirmed to peaks at [001], [011], [111], [020], [002], [120], [201], [202], [022], [311], [203], [113] and [132]. The indexed peaks are confirmed by monoclinic structure at [002], [202], [022], [311] and [113] [7]. These both structures were confirmed by SEM images. The broad diffraction bands shows the prepared samples
are nano sized. The ZrO$_2$ nanoparticle grain size was found as around 35 nm. The grain size calculated formula is given below [8].

$$D = 0.9 \lambda / \beta \cos \theta,$$

where λ is incident X-ray wavelength, β is FWHM, and θ is diffraction angle. The average grain sizes of ZrO$_2$ nanoparticles were calculated, from the diffraction bands.

3.2 SEM Analysis

The morphology of the prepared ZrO$_2$ nanoparticles shows the particles are crystalline nature and looks like stony structure due to the high degree of agglomeration. Agglomeration occurred because of appropriate intermolecular attraction present between the prepared nanoparticles. From the SEM images, the particle size is found around 32 to 38 nm. This observed size was confirmed as support from XRD analysis. The particles are confirmed as a randomly spherical shape from the image. SEM measurements were carried out on ZrO$_2$ nanoparticles to uncover morphological differences between the two systems at the nanometer and micrometer scales. Fig. 2 shows the SEM micrograph at four different magnifications for ZrO$_2$ nanoparticles.

![Fig. 2 SEM images of ZrO$_2$ nanoparticles](image)

3.3 FTIR Characterization

The chemical structures of ZrO$_2$ nanoparticles are characterized by FTIR spectroscopy. FTIR study confirms the functional groups present in the prepared ZrO$_2$ nanoparticles. Fig. 3 shows the FTIR spectrum of the prepared sample. The weak peaks from 3000 to 3500 cm$^{-1}$ corresponds to the stretching vibrations of O-H on surface of ZrO$_2$ nanoparticle, while the peaks at 751 cm$^{-1}$ and 577 cm$^{-1}$, Zr-O-Zr asymmetric and Zr-O stretching modes respectively, confirms the formation of ZrO$_2$ phases [9]. Weak bands observed at 1642 cm$^{-1}$ and 3336 cm$^{-1}$ are explain the stretching and bending vibrations of O-H bands, show to water molecule as absorbed. The bands 1339 cm$^{-1}$ is confirm to absorption of nonbridging OH groups. The bands 751 cm$^{-1}$ is occurred a peak for Zr-O-Zr asymmetric and Zr-O-Zr symmetric and Zr-O stretching modes respectively, confirms the formation of ZrO$_2$ phases [9]. Weak bands observed at 1642 cm$^{-1}$ and 3336 cm$^{-1}$ are explain the stretching and bending vibrations of O-H bands, show to water molecule as absorbed. The bands 1339 cm$^{-1}$ is confirm to absorption of nonbridging OH groups. The bands 751 cm$^{-1}$ is occurred a peak for Zr-O-Zr asymmetric and Zr-O-Zr symmetric and Zr-O stretching modes respectively, confirms the formation of ZrO$_2$ phases [9].

![Fig. 2 FTIR spectrum of ZrO$_2$ nanoparticles](image)

3.4 UV-DRS Analysis

The UV-DRS spectra of the prepared ZrO$_2$ nanoparticle as shown in Fig. 4. The optical band gap energy for the prepared ZrO$_2$ sample was determined from diffuse reflectance spectra using Kubelka Munk equation,

$$[(R_\infty).h\nu^2] = A(h\nu - E_g)$$

where $F(R_\infty)$ is the Kubelka-Munk function or reemission parameter, $h\nu$ is the energy of incident photon, R_∞ is the diffuse reflectance that is obtained from $R_\infty = R_{sample}/R_{standard}$, and A is a constant. The values of $(R_\infty).h\nu^2$ versus $h\nu$ was plotted for the prepared sample as shown in Fig. 4. Straight line was drawn to fit the experimental curve, and was extended to cut off the $h\nu$ axis, optical band gap energy value has been determined of ZrO$_2$ nanoparticles. From the Fig. 4, the optical band gap of prepared ZrO$_2$ nanoparticle has been 4.9 eV.

![Fig. 4 UV DRS spectrum of ZrO$_2$ nanoparticles](image)

3.4 Antimicrobial Activity

The antimicrobial activity of ZrO$_2$ was investigated against gram negative bacteria (Pseudomonas aeruginosa and Escherichia coli) and gram positive bacteria (Staphylococcus aureus and Bacillus subtilis), respectively. The prepared ZrO$_2$ nanoparticles showed a good inhibitory action against Pseudomonas aeruginosa (inhibition zone size of 10 mm) at the 100 µg/ml compared to other bacteria due to the negatively charged, P. aeruginosa cell wall readily attracting positively charged ZrO$_2$ and in that way inhibiting microbial actions. In addition to that the ZrO$_2$ nanoparticle was directly proportional to their inhibitory actions beside the tested microorganism. ZrO$_2$ nanoparticles have confirmed that they have possible biomedical applications.

![Fig. 5 Antimicrobial activity of ZrO$_2$ nanoparticles](image)

4. Conclusion

Zirconium dioxide was synthesized by microwave assisted solution technique. The indexed peaks are confirmed by monoclinic structure at (002), (022), (311) and (113) the ZrO$_2$ nanoparticle grain size was found as around 35 nm. The morphology of the ZrO$_2$ nanoparticle shows the particles are crystalline nature and looks like stony structure due to the high degree of agglomeration. The SEM images, of the ZrO$_2$ nanoparticles size is around 32 to 38 nm. The chemical structures of ZrO$_2$ nanoparticles are characterized by FTIR spectroscopy. The weak peaks from 3000 to 3500 cm$^{-1}$ corresponds to the stretching vibrations of O-H on surface of ZrO$_2$ nanoparticle, while the peaks at 751 cm$^{-1}$ and 577 cm$^{-1}$, Zr-O-Zr asymmetric and Zr-O stretching modes respectively, confirms the formation of ZrO$_2$ phases [9]. Weak bands observed at 1642 cm$^{-1}$ and 3336 cm$^{-1}$ are explain the stretching and bending vibrations of O-H bands, show to water molecule as absorbed. The bands 1339 cm$^{-1}$ is confirm to absorption of nonbridging OH groups. The very sharp peaks 751 cm$^{-1}$ is occurred at characteristic of m-ZrO$_2$.

References

