Structural and Dielectric Investigations of Cerium Stabilized Zirconia (Zr1-xCe2O2(x=0-0.05))

H.C. Madhusudhana1,2,*, S.N. Shobhadevi3, B.M. Nagabhushana4, R. Hari Krishna4, M.V. Murugendrappa5, H. Nagabhushana6

1Department of Physics, Dayananda Sagar Academy of Technology and Management, Bangalore – 560 082, Karnataka, India.
2BMS Academy of Science and Research affiliated to Tumkur University, Bangalore – 560 019, Karnataka, India.
3Department of Physics, B.M.S. College for Women, Bangalore – 560 019, Karnataka, India.
4Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore – 560 054, Karnataka, India.
5Department of Physics, B.M.S College of Engineering, Bangalore – 560 019, Karnataka, India.
6C.N.R. Center for Nano Research, Tumkur University, Tumkur – 572 103, Karnataka, India.

1. Introduction
Zirconia has likely the richest folks of nanostructures between all materials. Recently, nanocrystalline ceramics and the application of nanoparticles to develop the ceramic properties have created great interest, as the mechanical, electrical and magnetic properties are crystallite size responsive. Nanoparticles have expected much consideration in the field of material science because of their smart mechanical and physico-element properties which are completely different from their bulk counterparts [1-4].

Cerium incorporated ZrO2 that generally is used for several resolves related reduction process, such as oxygen reservoir and ionic conductor [5]. The chemical properties of cerium which has two oxidation states 3+ and 4+, makes it possible that large amount of reduction process. When oxygen partial pressure is high, cerium is fully oxidized and become 4+ states. On the other hands, when oxygen partial pressure is low, cerium is deoxidized and become 3+ states. Therefore, cerium-doped ZrO2 can store oxygen by change of partial pressure of oxygen or conduction of oxygen ion. Since application area of cerium-doped ZrO2 is closely related with its chemical state, chemical property of cerium-doped ZrO2 is intensively researched in many articles [6].

2. Experimental Methods
2.1 Chemicals
Analytical grade zirconyl nitrate [ZrO(NO3)2·6H2O; 99.99%] (Central Drug House (p) Ltd.), cerium nitrate [Ce(NO3)3·6H2O; 98.99%] (Central Drug House (p) Ltd.) and glycine [C2H5NO2; 99.98%] (Sigma Aldrich (p) Ltd.) are used as a starting materials for the preparation of Ce doped ZrO2 nanoparticles. The chemicals are used without any further purification.

2.2 Synthesis
For the synthesis of cerium doped zirconia, the stoichiometric amount of the samples used for combustion is calculated using total oxidizing and reducing valences of compounds. Calculated amount of zirconyl nitrate and glycine was added along with 25 mL of deionized water and the mixture was continuously stirred at room temperature up to get the homogeneous mixture. Later cerium nitrate was added to the mixture and mixed thoroughly to obtain the aqueous solution. The redox mixture was taken in a crystalline dish and introduced in a preheated muffle furnace maintained at 400 °C. Initially the solution boils and undergoes dehydration. Eventually the mixture undergoes decomposition, which results in the liberation of large amounts of gases (CO2, N2). This was followed by a spontaneous ignition which resulted in flame type combution with enormous swelling of the reaction mixture, which in turn produces foamy and voluminous ZrO2-(Ce2+ (1-5 mol%)).

2.3 Characterization
The powder X-ray diffraction (PXRD) patterns were recorded on X-ray diffractometer (Bruker AXS D8 Advance) using Cu kα radiation (λ=1.5418 Å) in the range 20° - 80°. Raman spectroscopy done by Horiba Jobin Yvon labRam HR in the range 0 to 800 cm⁻1. The FTIR spectra of the ZrO2 were recorded on IR Affinity-1 (Shimadzu, Japan) spectrometer in KBr medium, at room temperature. Energy gap analysis by UV-visible spectrometer (Spocord 250 plus, Germany). SEM micrographs were studied using scanning electron microscope (Jeol 6390 LV). HRTEM analysis was carried out by High resolution transmission electron microscope (300 kV, FEI, Technai G2, F30 S-Twin with FEG source). Nitrogen adsorption and desorption studies were carried out by BET surface area analyzer (NOVAC1000 Ver.370, USA). For impedance measurements, 1.0 g of each sample was pelleted to a diameter of about 10.0 mm and thickness of 1.0 mm. The pressure applied was about 10
tons/sqm. The pellets were then sintered in vacuum at 300 °C for 3 hours. The pelletized samples were analyzed by spectroscopy using 6500B series of precision impedance analyzer (Wayne Kerr-UK Electronics Pvt. Ltd., India) in the frequency range from 20 Hz to 10^7 Hz at room temperature. DC conductivity is measured using two probe technique (SES Instruments Pvt. Ltd). The frame contains the supporting electrodes made of Boller steel which enables to take observations even at temperatures as high as 700 °C. The pellet of sample under study can be sand-witched between two brass electrodes.

3. Results and Discussion

The XRD patterns of Zr_{1-x}Ce_{x}O_{2} (x=0-0.05) are as shown in the Fig. 1 and the diffraction peaks of the samples are indexed as (1 1 1), (2 0 0), (3 1 1) (2 2 2) and (4 0 0) respectively for 30.19°, 34.93°, 50.29°, 59.88°, 62.42° and 73.51°. The diffraction peaks of the sample are well resolved, highly intense and sharp matching with the standard JCPDS file No.27-0997 confirming the crystal structure as the cubic phase which is also in conformity with previous reports by S. Manjunatha et al [5]. At x=0.0, zirconia showed more intense peaks with wide base but as the doping concentration increased, intensity of the peaks decreased and the base became more widened after x=0.2.

![JCPDS file No.27-0997](image)

Fig. 1 XRD patterns of Zr_{1-x}Ce_{x}O_{2} at (a) undoped (b) x=0.01 (c) x=0.02 (d) x=0.03 (e) x=0.04 and (f) x=0.05

![Intensity (arb.units)](image)

Fig. 2 Shifting of XRD peaks of Zr_{1-x}Ce_{x}O_{2} at (a) undoped (b) x=0.01 (c) x=0.02 (d) x=0.03 (e) x=0.04 and (f) x=0.05 molar concentrations

Fig. 2 shows the peak shifting towards the lower angle side as the doping concentration increased which indicates that Ce^{3+}ions (radius 1.07 Å) are replacing Zr^{4+} ions (0.74 Å) which in turn decrease the crystallite size. Scherrer’s equation was used to calculate the crystallite size of the samples [7].

\[
D = \frac{K \lambda}{\beta \cos \theta}
\]

(1)

where D represents crystallite size, K is constant (~0.94), β is full width half maximum and θ stands for Bragg’s angle. Using Bragg’s law (nλ = 2d sin θ) interplanar spacing was calculated and is compared with the standard JCPDS data for the order n=1. The lattice constant (a) and dislocation density (δ) were also calculated using the Eqs.(2) and (3). The complete details of the calculated data are listed in the Table 1.

\[
d_{hkl} = \frac{\alpha}{\sqrt{h^2+k^2+l^2}}
\]

(2)

\[
\delta = \frac{1}{D^2}
\]

(3)

<table>
<thead>
<tr>
<th>ZrO_{2}:Ce^{3+} (mol%)</th>
<th>Crystallite size (nm)</th>
<th>Band gap (eV)</th>
<th>Strain (ε) x 10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23</td>
<td>4.0</td>
<td>16.90</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>3.8</td>
<td>18.02</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>3.6</td>
<td>20.21</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>3.5</td>
<td>22.89</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>3.4</td>
<td>31.79</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>3.3</td>
<td>50.54</td>
</tr>
</tbody>
</table>

It was observed that the d-spacing increased from 2.954 Å to 2.965 Å and the dislocation density also increased from 1.50 x 10^{12}/m² to 12 x 10^{12}/m². To verify this, a method suggested by Williamson and Hall (W-H) was followed [8] and this method is applicable in the cases where both crystallite size effect and the lattice deformation are simultaneously operative. The combined effect of size and lattice deformation gives rise to the observed full width half maximum (FWHM, β) in the XRD patterns. β is the sum of β₁ (grain size dependent broadening) and β₂ (lattice distortion dependent broadening). W-H equation may be expressed in the form:

\[
\beta \cos \theta = \epsilon (4 \sin \theta) + \frac{1}{D}
\]

(4)

where β (in radian), ε is the strain developed and D is the grain size. The equation represents a straight line between 4sinθ (x-axis) and βcosθ (y-axis), where 2θ is the Bragg’s angle corresponding to XRD peaks. The slope of line gives the strain (ε) and intercept (1/D) of this line on the Y-axis gives grain size (D). W-H plot for the samples are as shown in the Fig. 3. The detailed calculation of crystallite size and strain of both methods (Scherrer’s & W-H method) are listed in the Table 2.

![W plots of Zr_{1-x}Ce_{x}O_{2} at (a) undoped (b) x=0.01 (c) x=0.02 (d) x=0.03 (e) x=0.04 and (f) x=0.05 molar concentrations](image)

Fig. 3 W-H plots of Zr_{1-x}Ce_{x}O_{2} at (a) undoped (b) x=0.01 (c) x=0.02 (d) x=0.03 (e) x=0.04 and (f) x=0.05 molar concentrations

![SEM images of Zr_{1-x}Ce_{x}O_{2} at (a) undoped (b) x=0.01 (c) x=0.02 (d) x=0.03 (e) x=0.04 and (f) x=0.05 molar concentrations](image)

Fig. 4 SEM images of Zr_{1-x}Ce_{x}O_{2} at (a) undoped (b) x=0.01 (c) x=0.02 (d) x=0.03 (e) x=0.04 and (f) x=0.05 molar concentrations

Cite this Article as: H.C. Madhusudhana, S.N. Shobhadevi, R.M. Nagabhushana, R. Hari Krishna, M.V. Murugendrappa, H. Nagabhushana, Structural and dielectric investigations of cerium stabilized zirconia (Zr_{1-x}Ce_{x}O_{2}(x=0-0.05)) nanocrystals blended by wet chemical method, J. Nanosci. Technol. 5(2) (2019) 649-654.
SEM provides complementary evidence of different nanostructures. Fig. 4a shows spherical shaped particles which are completely agglomerated in nature. As the doping concentration of Ce increased the shape of the spherical particles changed to irregular non-uniform spike like structures (Fig. 4c-f) with high porosity.

Table 2 The detailed calculation of crystallite size and strain of both methods (Scherrer’s and W-H method)

<table>
<thead>
<tr>
<th>Sample (mol)</th>
<th>a (Å)</th>
<th>d = 0.2θ (°)</th>
<th>d (nm)</th>
<th>d(10^<2>/μm²)</th>
<th>a (Å)</th>
<th>d (nm)</th>
<th>d(10^<2>/μm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undoped</td>
<td>111</td>
<td>30.22</td>
<td>2.954</td>
<td>2.930</td>
<td>0.024</td>
<td>0.319</td>
<td>5.116</td>
</tr>
<tr>
<td>ZrO<sub>2</sub></td>
<td>200</td>
<td>35.89</td>
<td>2.554</td>
<td>2.550</td>
<td>0.004</td>
<td>0.321</td>
<td>5.108</td>
</tr>
<tr>
<td>Zr<sub>1-x</sub>Ce<sub>x</sub>O<sub>2</sub></td>
<td>220</td>
<td>50.39</td>
<td>1.888</td>
<td>1.881</td>
<td>0.007</td>
<td>0.394</td>
<td>5.116</td>
</tr>
<tr>
<td>Zr<sub>1-x</sub>Ce<sub>x</sub>O<sub>2</sub></td>
<td>311</td>
<td>59.90</td>
<td>1.524</td>
<td>1.534</td>
<td>0.008</td>
<td>0.483</td>
<td>5.115</td>
</tr>
<tr>
<td>Zr<sub>1-x</sub>Ce<sub>x</sub>O<sub>2</sub></td>
<td>222</td>
<td>62.93</td>
<td>1.475</td>
<td>1.471</td>
<td>0.004</td>
<td>-</td>
<td>5.110</td>
</tr>
<tr>
<td>%</td>
<td>400</td>
<td>74.12</td>
<td>1.277</td>
<td>1.270</td>
<td>0.007</td>
<td>-</td>
<td>5.110</td>
</tr>
<tr>
<td>Zr<sub>1-x</sub>Ce<sub>x</sub>O<sub>2</sub></td>
<td>111</td>
<td>30.32</td>
<td>2.954</td>
<td>2.930</td>
<td>0.014</td>
<td>0.330</td>
<td>5.117</td>
</tr>
<tr>
<td>(mol)</td>
<td>200</td>
<td>34.98</td>
<td>2.562</td>
<td>2.550</td>
<td>0.012</td>
<td>0.365</td>
<td>5.124</td>
</tr>
<tr>
<td>%</td>
<td>220</td>
<td>50.32</td>
<td>1.811</td>
<td>1.801</td>
<td>0.011</td>
<td>0.557</td>
<td>5.122</td>
</tr>
<tr>
<td>Zr<sub>1-x</sub>Ce<sub>x</sub>O<sub>2</sub></td>
<td>311</td>
<td>59.90</td>
<td>1.540</td>
<td>1.534</td>
<td>0.006</td>
<td>0.441</td>
<td>5.110</td>
</tr>
<tr>
<td>Zr<sub>1-x</sub>Ce<sub>x</sub>O<sub>2</sub></td>
<td>222</td>
<td>62.93</td>
<td>1.475</td>
<td>1.471</td>
<td>0.004</td>
<td>-</td>
<td>5.110</td>
</tr>
<tr>
<td>%</td>
<td>400</td>
<td>74.12</td>
<td>1.277</td>
<td>1.270</td>
<td>0.007</td>
<td>-</td>
<td>5.110</td>
</tr>
</tbody>
</table>

This type of porous network is a typical characteristic feature of combustion synthesized powders. The porous powders are highly friable which facilitates easy grinding to obtain finer particles. When the gas escapes with high pressure, pores are formed with the simultaneous formation of small particles near the pores [9]. EDS results of 5 mol% Ce-doped zirconia is as shown in the Fig. 5 on the basis of EDS peaks it can be concluded that amount of zirconia on the surface layer decreases whereas increase of Ce⁴⁺ amounts is observed. The detailed compositions of all Ce-doped ZrO₂ are listed in the Table 3.

Table 3 The detailed compositions of all Ce-doped ZrO₂

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight (%)</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>13.4</td>
<td>17.42</td>
<td>34.78</td>
<td>29.66</td>
<td>51.12</td>
<td>16.18</td>
<td>33.62</td>
<td>14.3</td>
<td>30.02</td>
<td>11.1</td>
</tr>
<tr>
<td>O</td>
<td>42.76</td>
<td>56.98</td>
<td>53.05</td>
<td>40.08</td>
<td>53.14</td>
<td>53.13</td>
<td>36.15</td>
<td>36.15</td>
<td>36.15</td>
<td>36.15</td>
</tr>
<tr>
<td>Zr</td>
<td>41.95</td>
<td>10.79</td>
<td>44.51</td>
<td>11.17</td>
<td>37.80</td>
<td>5.85</td>
<td>44.23</td>
<td>12.11</td>
<td>42.30</td>
<td>11.69</td>
</tr>
<tr>
<td>Cel</td>
<td>1.89</td>
<td>0.32</td>
<td>2.68</td>
<td>0.46</td>
<td>1.56</td>
<td>0.23</td>
<td>5.41</td>
<td>0.96</td>
<td>7.25</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

The FTIR spectra Zr_{1-x}Ce_xO₂ (x=0-0.05) are shown in Fig. 6. The strong broad peaks corresponding to 3445 cm⁻¹ and 1624 cm⁻¹ confirm the presence hydroxyl group i.e. stretching and bending vibrations of H-O bond due to absorption of water molecules [10]. The intense peak at 3369 cm⁻¹ can be attributed to adsorption of non-bonding O-H. The band at 1141 cm⁻¹ corresponds to the stretching vibrations of Zr-O terminal groups (0 means a non-bridging atom). A similar observation has been reported by Prakash babu et al [9]. The strong broad peak at 500 cm⁻¹ is due to stretching vibrations of Zr-O.

This UV-Visible analysis was done using reflectance spectra as shown in the Fig. 7. Here it was observed that minimum reflection was between 200-230 nm which is attributed to the transition of charge transfer between O⁻² (2p) to Zr⁴⁺ (4d). This transition is mainly due to the excitation of electrons from valence band to conduction band.

In Fig. 8, the Kubelka–Munk function [11,12] was used to calculate the bandgap and it was found that energy decreased due to doping of Ce to ZrO₂ which matches with the previously reported values, 3.3 eV - 4 eV [13, 14]. The drastic decrease in the Eg values is attributed to the introduction.
of more defects in the lattice of ZrO$_2$ by the interstitials or oxygen vacancies [5].

Impedance spectroscopy [15] is a very suitable and potential experimental tool which enables to correlate the dielectric properties of a material with its microstructure and also it aids to analyse and reprint the contribution from various components (i.e., through grain, grain boundary, interfaces, etc.) of polycrystalline materials over a widespread frequency [15]. The data of resistive (real part) and reactive (imaginary part) components are taken by using Ohmic resistance measurements. It can be presented conventionally in Nyquist plot in terms of any of the four possible complex formalisms, the impedance (Z'), the permittivity (ε'), the admittance (Y') and the dielectric loss (tan δ). The impedance measurements were carried out at room temperature in the frequency range from 100 Hz to 5 MHz.

The Nyquist plots for both undoped and doped samples of zirconia at room temperature are as shown in the Fig. 9 (a-f). The plot exhibits a semicircle from high to medium frequencies indicating the charge transfer process. The straight line, at around 45° of the real axes, observed in the low frequency region, is associated to the semi-infinite Warburg impedance. In addition, the steep sloping line observed in lower frequency region is associated with the finite space diffusion process. The intercept at real impedance (Real-Z) axis on high frequency is related to the ohmic resistance, which comes from the contribution of electrolyte and the electrode [16]. The electrode, grain boundary and grain conductivity contributions were represented by the low, middle order and high frequency semicircles respectively in the Nyquist plots [17]. Hence, the total conductivity is due to electrode, grain boundary and grain conductivity. From EC-Lab software (version 11.12) Biologic instruments, the electrochemical parameters were evaluated. We witnessed excellent agreement between the parameters obtained from the fitting results (electrical equivalent circuit model) and experimental results.

The chi-squared (χ²) minimized to 10^-3, y(f) the function defined as the sum of the squares of the residuals. The electrical equivalent circuit was used in simulation of the impedance behaviour of the samples from the experimentally obtained impedance data. The corresponding circuit to fit the impedance graphs is represented in the inset of Fig. 9 (a-f).

![Fig. 9 Nyquist plots for (a) undoped, (b) 1 mol% Ce$^{3+}$, (c) 2 mol%, (d) 3 mol% Ce$^{3+}$, (e) 4 mol% and (f) 5 mol% Ce$^{3+}$ doped samples of zirconia at room temperature](https://doi.org/10.30799/jnst.220.19050201)

The model R + Q3/(R1+Warburg) + Q1/R2 is fitted for undoped and Ce$^{3+}$doped ZrO$_2$ samples. It consists of a series combination of solution resistance R$_1$ and constant phase element Q1 which is in parallel with resistor R1 and Warburg impedance (W) and constant phase element Q2 which is in parallel with resistor R$_2$ in the sample. R$_1$ represents the grain boundary resistance; R$_2$ represents grain resistance; Q$_1$ symbolize the deviance of capacitance from ideal actions. Using the equation given below the real capacitance can be calculated.

$$C = Q_1^2/(Q_1^2+Q_2^2)$$

In the above equation, the value of exponent ‘a’ is between 0 and 1 which signifies the existence of non-Delbye type relaxation in the sample. The fitting parameters values of R, Q and W are listed in Table 3. Compared to undoped zirconia, all Ce$^{3+}$ doped zirconia samples showed more grain conductivity. Initially at x=0.01 and at x=0.02 (Fig. 9b and c) the sample showed decreasing conductivity, at x=0.03 (Fig. 9d) showed sudden increase, at x=0.04 (Fig. 9e) it showed a decrease and at x=0.05 (Fig. 9f) it showed a maximum conductivity. This peculiarity can be clarified in the following way. When Ce$^{3+}$ ions are doped into zirconia, for charge neutrality, one oxygen vacancy is formed for every one Ce$^{3+}$ ion, which may be symbolized by the Kröger–Vink notation.

$$\text{Ce}_2\text{O}_3 \rightarrow 2\text{Ce}^{3+} + 3\text{O}^{2-} + V_0$$

$$\left[\begin{array}{c} 2\text{Ce}^{3+} + 3\text{O}^{2-} + V_0 \\ \text{Ce}_2\text{O}_3 \end{array}\right] = 2\text{V}_0$$

where Ce$_{2x}$, represents Zr$^{4+}$ site occupied by Ce$^{3+}$ ion and V$_0$ is the oxygen vacancy. In a recent study [18] it has been reported that oxygen vacancies (V$_0$) increase with doping concentration. Therefore, with the more of Ce$^{3+}$ ion concentration the conductivity increases and reaches a maximum value at x=0.05. It was observed that at x=0.04 the conductivity decreases which is due to a greater number of interactions between Ce$^{3+}$ ions and oxygen vacancies and formation of local defect structures which lower the mobile oxygen vacancies [19]. The formation of dimers (Ce$_{2x}$ – V$_0$) are responsible for the associated enthalpy at lower concentration of Ce$^{3+}$ ions.

In the same way the probability of formation of trimers (Ce$_{2x}$ – V$_0$ – Ce$_{2x}$) becomes high for higher concentrations of Ce$^{3+}$ ions (at x=0.04) since the concentration of Ce$^{3+}$ ions grow double the oxygen vacancies. Therefore, the decrease in conductivity is mainly due to increase in establishment of trimers and local defect structures with more and more of Ce$^{3+}$ ion concentration.

<p>| Table 4 The fitting parameters values of R, Q and W for undoped and Ce$^{3+}$ doped ZrO$_2$ samples |
|-------------------------|--------|--------|--------|</p>
<table>
<thead>
<tr>
<th>R$_0$/R$_1$ (Ω)</th>
<th>Q$_1$ (F)</th>
<th>R$_2$ (Ω)</th>
<th>W$_0$ (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undoped</td>
<td>123</td>
<td>6.14e+9</td>
<td>7.23e+10</td>
</tr>
<tr>
<td>Ce$^{3+}$ doped</td>
<td>95</td>
<td>6.05e+9</td>
<td>7.73e+10</td>
</tr>
<tr>
<td>1 mol%</td>
<td>90</td>
<td>0.2267e+9</td>
<td>7.85e+9</td>
</tr>
<tr>
<td>2 mol%</td>
<td>92</td>
<td>14.45e+12</td>
<td>1.99e+14</td>
</tr>
<tr>
<td>3 mol%</td>
<td>94</td>
<td>2.354e+6</td>
<td>0.5428e+6</td>
</tr>
<tr>
<td>4 mol%</td>
<td>95</td>
<td>2.354e+6</td>
<td>0.5428e+6</td>
</tr>
<tr>
<td>5 mol%</td>
<td>96</td>
<td>2.354e+6</td>
<td>0.5428e+6</td>
</tr>
</tbody>
</table>

The dielectric constant (ε') and the ac conductivity (σ_{ac}) of the samples were calculated using the following formulæ.

$$\varepsilon' = \left(\frac{C}{d}\right)\left(\varepsilon_A\right)$$

$$\sigma_{ac} = G \times \varepsilon'$$

where C is the capacitance, d is thickness, G is conductance, ε_A is absolute permittivity and A is area of the pellets. The dielectric constant (ε') response as a function of frequency (log f) of undoped and doped Zirconia is as shown in Fig. 10.

![Fig. 10 Variation of frequency vs Dielectric constant of Zr$_{1-x}$Ce$_x$O$_2$ at (a) undoped (b) x=0.01 (c) x=0.02 (d) x=0.03 (e) x=0.04 and (f) x=0.05 molar concentrations](https://doi.org/10.30799/jnst.220.19050201)

All the samples were showing high dielectric constant at low frequencies because at the interface, electrolyte and electrode contribute to oxygen ions polarization. As the frequency increases the dielectric...
constant decreases rapidly and becomes saturated at high frequency region for all the samples. High dielectric constant ($\epsilon^\prime = 50$) was observed for the sample at $x=0.05$ (5 MHz) and low dielectric constant ($\epsilon^\prime = 18$) was observed for undoped ZrO$_2$ (5 MHz). The value of high dielectric constant at lower frequencies is due to the contributions from the space charge, dipolar, ionic and electronic polarizations [20]. Space charge polarization is generally responsive at lower frequencies and the frequency dependent dielectric constant may be explained on the basis of space charge polarization phenomenon [21].

Fig. 11 shows the variation of dielectric loss of Zr$_1$Ce$_x$O$_2$ (x=0-0.05) with respect to frequency. It indicates the presence of a lone relaxation peak, which may be due to the dipole moment of the defect pair (Ce$^{4+}$ - V0). At higher frequency, because the dipoles cannot re-orient themselves to the applied frequency, the tangent loss (tanδ) value becomes independent. The relaxation peak shifts towards high frequency region from undoped Zirconia to all other doped Zirconia samples. The intensity of the peak is increasing due to increased oxygen vacancies and also due to the defect pair which might be unrestricted from defect trimers (Ce$^{4+}$ - V0 - Ce$^{4+}$) [22]. This results in higher grain conductivity due to oxygen vacancies which execute local motions around Ce$^{4+}$-dopant giving rise to long range migrations. This type of shifting of relaxation peaks is explained by H. Yamamura et al. in an earlier report, according to which the relaxation peaks at higher frequency side corresponds to defect pair such as (Ce$^{4+}$ - V0) and relaxation peaks at lower frequency side are due to neutral trimers such as (Ce$^{4+}$ - V0 - Ce$^{4+}$) [23]. This shows that oxygen vacancy and dopants have columbic interaction, hence depending on Ce$^{4+}$ concentration, the relaxation peak shifts to higher frequency region due to the variation in defect pairs.

Fig. 11 Variation of frequency v/s loss tangent of Zr$_1$Ce$_x$O$_2$ at (a) undoped (b) x=0.01 (c) x=0.02 (d) x=0.03 (e) x=0.04 and (f) x= 0.05 molar concentrations.

Fig. 12 shows the variation of ac conductivity (\(\sigma^\prime\)) with frequency. As seen from the figure, the ac conductivity has a small value at lower frequencies and increased at higher frequencies. It has a maximum value at 10 MHz for Ce doped ZrO$_2$ having low dispersion which is reflecting in dielectric constant. Incorporation of Ce$^{3+}$ ions to the lattice Zr$^{4+}$ creates more defects in the crystals which also contribute to the increase in conductivity. The ac conductivity increases at higher frequency and after a certain limit, it responds according to Jonscher’s power law [24] which is given by,

$$\sigma^\prime (\omega) = \sigma^\prime_0 + A \omega^n$$

(10)

where \(n\) is frequency exponent and \(A\) is the pre-exponential factor. With the help of jump relaxation model, conductivity of all the samples can be explained based on previous reports [25]. The dielectric constant $\epsilon^\prime(\omega)$ and ac conductivity $\sigma^\prime(\omega)$ variation with respect to doping concentration is shown in the Fig. 13.

4. Conclusion

In summary, Zr$_1$Ce$_x$O$_2$ (x=0-0.05) nanocrystals were prepared by low cost wet chemical method. XRD data matches with JCPDS file No. 27-0997 confirming the crystal structure of the sample as cubic phase. The SEM images showed the samples are irregular in shape and agglomerated. The impedance spectra were analyzed using suitable RQ circuit and found that both the grain and grain boundary contribution were present in the materials. Impedance analysis also conformed the non-Debye type relaxation in the materials. The variation of conductivity was correlated with oxygen vacancies and defect associates. The shift of the relaxation peak of tanδ with doping concentration has been explained in the light of formation of dimers or trimers and evolution of oxygen vacancies. The relaxation peak in modulus spectra was attributed to the charge reorientation relaxation of defect pairs. The conductivity values, dielectric and modulus properties of pure zirconia were compared to that of Ce$^{4+}$ doped Zirconia. The conductivity values and dielectric properties showed x= 0.05 as the optimum doping concentration in our present system.

Acknowledgements

H.C. Madhusudhana is grateful to the Principal, Dayananda Sagar Academy of Technology and Management for their continuous support and encouragement. The author is thankful to the Dr. P. Aruna, Asst. Professor, Dept. of Physics, DSCE, Bangalore, for her valuable suggestions in all characterization analysis.

References

[19] S. Ramesh, K.C. James Raju, Preparation and characterization of Ce1-x(Gd0.5Pr0.5)xO2 (x=0,1,2) XOs: electrolyte for IT-SOFCs, Int. J. Hydro. Ener. 37 (2012) 10311-10317.