Pharmacological Properties of Emodin – Anthraquinone Derivatives

R. Sharma¹,²*, A.B. Tiku², A. Giri¹

¹Environment and Human Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar - 788 011, Assam, India.
²School of Life Sciences, Jawaharlal Nehru University, New Delhi – 110 067, India.

1. Introduction

Quinones are an important class of naturally occurring compounds widely distributed among all respiring organisms. Anthraquinones comprise the largest group of natural quinones. Natural anthraquinones are widely investigated for their potential therapeutic use. Emodin (1,3,8-trihydroxy-6-methyl anthraquinone), an anthraquinone polyphenol present in several medicinal herbs like in the root and rhizome of *Rheum palmatum*, is an essential component of most Chinese alternative medicine. It exhibits diverse biological activities including anti-inflammatory, anti-microbial, anti-mutagenic properties and modulates the immune system, vasomotor system as well as metabolic processes. Emodin is emerging as a new class of compounds for the treatment of radiation injury, cancer, diabetes, neuronal disorders and inflammation associated disease. This review aims to summarize the pharmacological properties of emodin reported to date with emphasis on its biological activities and the promising mechanism of action.

2. Occurrence, Chemical Structure and Metabolism of Emodin

Emodin, an anthraquinone polyphenol found in different types of herbs, climbers, shrubs and trees of at least 94 species belonging to 28 genera and 17 families [3]. The root and rhizome of *Rheum palmatum* is a rich source of emodin. Emodin is a major phytoestrogen with an affinity for human estrogen receptors [27] and exhibits diverse biological activities. The biological activity of anthraquinones are closely related to their chemical structure. It has been reported that the hydroxyl, methyl and carbonyl groups of emodin are the key determinants of its biological activity [28]. Markovic and Manojlovic [29] found that all the OH groups at position C1, C3 and 8 can undergo keto-enol tautomerisation. They suggested that since the enole forms are stabilized by π-conjugation in the benzene ring, they are more stable than the keto forms. Besides, they observed that the bond dissociation enthalpy of OH bonds at C1 and C8 positions are higher than at C3 position. These observations suggest the importance of C3 hydroxyl group of emodin with regard to its antioxidant potential.

Bachmann and Schlatter [30] studied the pharmacokinetics of emodin in rats using radioactive labeling. They reported that the highest concentrations emodin in peripheral blood could reach within 2 hr of the exposure which decreases to about 30% in the next 24 hr period. Liang et al. [31] showed that the serum profile of emodin in rabbits follows a two-

---

<table>
<thead>
<tr>
<th>Biological Activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-cancer</td>
<td>[6, 7]</td>
</tr>
<tr>
<td>Anti-metastatic</td>
<td>[6, 7]</td>
</tr>
<tr>
<td>Anti-viral activity</td>
<td>[8, 9]</td>
</tr>
<tr>
<td>Anti-mitotic</td>
<td>[10]</td>
</tr>
<tr>
<td>Anti-oxidant</td>
<td>[11, 12]</td>
</tr>
<tr>
<td>Anti-inflammatory</td>
<td>[13]</td>
</tr>
<tr>
<td>Anti-hyperglycemic</td>
<td>[14]</td>
</tr>
<tr>
<td>Antibacterial</td>
<td>[15, 16]</td>
</tr>
<tr>
<td>Anti-fungal</td>
<td>[17, 18]</td>
</tr>
<tr>
<td>Anti-viral</td>
<td>[19]</td>
</tr>
<tr>
<td>Hepato-protective</td>
<td>[19, 20]</td>
</tr>
<tr>
<td>Neuro-protective</td>
<td>[21, 22]</td>
</tr>
<tr>
<td>Anti-mutagenic</td>
<td>[23, 24]</td>
</tr>
<tr>
<td>Anti-diabetic</td>
<td>[25]</td>
</tr>
<tr>
<td>Anti-fibrosis</td>
<td>[26]</td>
</tr>
</tbody>
</table>
compartment model. The observed distribution half-life of emodin was 6.8 min and the elimination half-life was 227 min. The blood level of emodin has been reported to be significantly higher in female rats compared to male rats [32].

3. Pharmacological Properties

3.1 Gastrointestinal Effects

Emodin exhibited hepatoprotective effects on carbon tetrachloride (CCL4) as well as D-galactosamine (D-GalN)-induced liver damage [33]. Studies have shown that emodin is a potent agent in the management of clinical and experimental acute pancreatitis via accelerating pancreatic repair and regeneration process. These effects have been attributed to the ability of emodin to promote up regulation of the epidermal growth factor (EGF) and transforming growth factor-β1 (TGF-β1) genes [41]. In murine test system, emodin enhanced small intestinal peristalsis by promoting secretion of motilin by lowering the content of somatostatin and inhibiting Na+-K+-ATPase activity of the intestinal mucosa [35]. Jung et al. [36] reported hydroxyl radical inhibitory and/or scavenging activities and hepatoprotective activity of emodin on tacrine-induced cytotoxicity in HepG2 cells. Emodin has the effect of promoting liver regeneration and improving liver function in rats after reduced size transplantation by improving proliferation of liver cell and protecting liver cells from injury [37]. Emodin has a protective effect on hepatocytes and alleviate cholestatic hepatitis by antagonizing pro-inflammatory cytokines and mediators, inhibiting oxidative damage, improving hepatic microcirculation, reducing impairment signals, and controlling neutrophil infiltration [38]. Ali et al. [39] demonstrated that emodin can prevent hepatosteatosis, preserving liver from pro-inflammatory and pro-oxidant damage caused by high-fat/high-fructose diet. Recently Liu et al. [40] showed that protective role of emodin in alcohol-mediated liver steatosis. Emodin pre-treatment has also been reported to protect against Con A-induced liver injury in mice and the effects could involve differential regulation of helper T as well as macrophages and modulation of the p38 MAPK-NF-κB pathway [20].

3.2 Renal Protective Effect

Mesangial cells play a significant role in the genesis of the cellular damage observed in nephritis. The increase in the number of mesangial cells or the amount of mesangial matrix are characteristics of renal lesion sites. Emodin showed strong suppressive effect on human mesangial cell proliferation activated by interleukin (IL-1β and IL-6) [41]. Emodin ameliorated the high glucose-induced matrix synthesis via suppression of the activation of protein kinase C and CAMP binding protein in mesangial cells. Moreover, emodin inhibited proliferation and promoted apoptosis in renal proximal tubular cells from lupus nephritis patients. This may be important in suppressing interstitial fibrosis and improving prognosis of lupus nephritis [42]. Emodin effectively ameliorated renal dysfunction in diabetic nephropathy rats probably by inhibiting p38 MAPK pathway and fibronectin down regulation [43], thus represents a promising strategy to prevent renal dysfunction in early stages of diabetes mellitus [38]. Yang et al. [21] reported that emodin inhibited DNA-binding and transcriptional activity of NF-κB resulting in down regulation of TGF-β1 and FN expression. They suggested that emodin-mediated inhibition of NF-κB pathway could protect against diabetic nephropathy. Ali et al. [22] showed that emodin had protective role against cisplatin-induced nephotoxicity in rats. Emodin were shown to inhibit high glucose induced proliferation of rat renal mesangial cells via inducing cell cycle arrest at G1 phase as well as cellular apoptosis via up regulation of pro-apoptotic mediators bax and caspase activation, and showed promising treatment of diabetic nephropathy [44].

3.3 Anti-Fungal and Anti-Microbial and Anti-Viral Effects

Emodin showed important antifungal activity against Botrytis cinerea, Erysiphe graminis, Phythophthora infestans, and Rhizoctonia solani [45]. However, Cipollina et al. [23] and Kastanos et al. [46] reported that emodin had no noticeable effect on Sclerotinia minor, Sclerotinia sclerotiorum or Botrytis cinerea. Emodin delayed the development of subcutaneous abscesses due to infection of Trichomonas vaginalis and oral administration inhibited the trichomonas induced intra-vaginal infection [47]. Meanwhile, Wang and Chung [48] reported that emodin suppressed the growth of Helicobacter pylori (which is closely related to peptic ulcer disease) and proposed that the effect could be due to induction of DNA damage. Emodin showed efficacy against both human fungal pathogens (inhibiting both spore germination and hyphal growth) and several strains of bacteria [18]. Anti-bacterial activity of emodin at against methicillin-resistant Staphylococcus aureus has been reported [49]. Emodin showed direct antibacterial activity. Vibrio alginolyticus and the antibiotic-resistant organism of bacterial septicaemia has also been reported [50]. It is a potent anti-herpes simplex virus (HSV) agent that inhibits the yields of HSV-1 via the suppression of a novel target, UL12 [38]. Emodin could inhibit Coxsackievirus B1 (CVB1) induced apoptosis in vitro and in vivo [9]. Dey et al. [51] reported that emodin exhibited antibacterial activity of emodin against multi-drug resistant Mycobacterium tuberculosis and other bacterial pathogens. Li et al. [16] reported in vitro antibacterial action of emodin against Haemophilus parasuis and showed that emodin as a candidate for treating Glisser’s disease. Emodin has also been reported to show inhibitory effect on HBV replication in vivo, which may function as a supplementary modality in the treatment of hepatitis B infection [8]. Gao et al. [52] proposed that the antibacterial activity of emodin against S. aureus could be the result of disruption of cell wall/membrane integrity in the host organism.

3.4 Anti-Cancer Activities of Emodin

A number of studies have analyzed the anti-tumour properties of emodin and suggested possible mechanisms of such effects [7]. Studies on emodin and various other anthraquinone derivatives have revealed that the C1 and C3 positions of emodin is important for the cytotoxicity [53]. Emodin has been reported to have differential cytotoxicity against ras-transformed bronchial epithelial cells compared to the normal human bronchial epithelial cells. On the other hand, reports to the contrary have been published [38]. The observed differences could at least in part be due to the cell lines and the concentrations of the test agents used. Studying on murine leukocytes, Shafirov et al. [54] reported that a concentration of 100µM failed to produce significant cytotoxic effects and suggested that normal and tumor cells may have differential sensitivity towards emodin.

Perturbation of cell cycle progression has been a primary target of cancer chemotherapies, thus resulting cancer cell proliferation and metastasis. The effect of emodin on the regulation of cell cycle has been demonstrated on various cancer cells. Emodin has been reported to cause cell cycle arrest at G2/M in v-ras-transformed cells and HepG2/C3A cells [55]. Shieh et al. [55] proposed that the G2/M arrest could be effected through up regulation of p53 and p21 genes. Besides its effects on G2/M arrest, emodin has been implicated in the blockage of G1 to S transition in HCT-15 carcinoma cells [56] as well as breast cancer MDA-MB-453 cells [57]. Emodin has also been reported to cause down regulation of the TCF/LEF transcriptional activity in human colorectal cancer cells (SW480 and SW620), thus interfering in the Wnt signalling pathway [38]. Hwang et al. [50] found that emodin attenuated radio resistance in the HepG2 cells via down regulation of the apoptotic signals and down regulation of the proliferative signals. Sun et al. [59] reported that inhibition of metastasis and cancel invasion observed following emodin exposure could be mediated through decreased activity of p38 and ERK as well as down regulation of p53 and p21 [58]. Emodin has also been reported to produce synergistic cytotoxic and antiproliferative effects in combination with other agents in the treatment of several different cancer cell lines [60].

Apart from cell cycle perturbation, another important mechanism of the potential anti-cancer effect of emodin is the induction of apoptosis. The ability of emodin to induce apoptosis in cancer cell lines has been reported by a number of studies [7]. During metabolism, the quinone structure of emodin is converted to semiquinone which generates ROS due to interaction with oxygen. Generation of ROS during the metabolism of the semiquinone is considered to be the causative factor of emodin-induced apoptosis [61]. Bras et al. [62] reported that ROS contributes to mitochondrial injury, reduction of mitochondrial trans-membrane potential, cytochrome C release, and subsequent caspase activation resulting induction of apoptosis.

The mitochondrial pathway of emodin induced apoptosis could involve the anti-apoptotic protein Bcl-2 proteins. It has been shown that emodin-induced apoptosis is closely related with the down regulation of Bcl-2 gene expression which could be mitigated through ectopic expression of Bcl-2 [63]. Besides, increased expression of the pro-apoptotic proteins Bax and Bak following emodin exposure has also been reported [63]. Recently, Ma et al. [64] reported that emodin-induced inhibition of tumour angiogenesis and metastasis could be related to down regulation of the transcription factor Runx2 and inhibition of matrix metalloproteinases (MMPs) and vascular endothelial growth factor receptor-2 (VEGFR-2).

3.5 Anti-Inflammatory and Immunosuppressive Effects

Chronic inflammation promotes cancer development during tumour progression [65]. A number of chemicals with anti-inflammatory effect can protect animals against the toxic and carcinogenic effects of chemicals and
microbes [66]. Emodin was reported to suppress the proliferation of several actuated c77777 lines, including primary human T lymphocytes, mononuclear cells, mesangial cells and RAW 264.7 macrophages [38]. The mechanisms of this inhibition are related to (a) the attenuation of IL-2 and TNF-a mRNA level expression, (b) decrease of IL-1, IL-2, IL-4 and TNF-a cytokine production, (c) hydrogen peroxide generated from semiquinone, and (d) suppression of NFkB activation. Emodin has been reported to inhibit inflammation in C3212 myotubes and 3T3-L1 adipocytes [67]. Sharma and Tiku [13] showed that emodin inhibited concanavaline-A induced inflammation and proliferation by modulating cytokines (Th1/Th2/Th17) response in murine splenocytes in vitro. They found that administration of emodin showed therapeutic effects on the progression of hypertrophic scarring characterized by inflammation. The underlying mechanism of this response is due to inhibition of the PI3K/Akt signaling pathway [68]. Emodin suppressed p-IkBα/IkBα ratio and reduced NF-kB subunit p50 in the nuclear fraction, and modulated LPS-induced innate immune response in adipocytes by altering expression of PTEN [69]. Emodin showed therapeutic potential against allergic bronchial asthma by exhibiting anti-inflammatory effects on airway inflammation in mouse model [70], and in acute lung injury in mice possibly through NF-kB inactivation [71]. Recently it showed that emodin be used as a natural anti-neuroinflammatory agent that exerts its effects by inducing HO-1 and NQO1 via AMPK/Nrf2 signalling in microglia [72]. In RAW264.7 cells, emodin suppresses LPS-induced inflammation through a PPARy-depolyglycogen signaling pathway [73]. Emodin has been reported to increase host survival by preventing post-orthotopic transplantation rejection possibly through protection of hepatocytes against apoptotic death and inhibition of CD4(+) T cell proliferation in vivo [38]. Immunomodulatory effects of emodin may have been attributable, in part, to the anti-proliferative effects on lymphocytes and the ability to modulate the Th1/Th2 balance (towards TH2 and Treg) [13]. Inhibition of extracellular Ca2+ influx and protection of cell membrane are proposed as possible mechanisms of the anti-allergic activity of emodin [74].

3.6 Anti-Mutagenic Effect

The anti-mutagenic effect of emodin has been reported in many studies. In Salmonella typhimurium (TA98) and E. coli PQ37, emodin prevented the formation of DNA adducts induced by 1-nitropyrene [75]. In addition, emodin markedly inhibited benzo(a)pyrene-mediated DNA damage in comet assay system [76]. Emodin is shown to protect DNA damage induced by radiation in pH8322 plasmid [13]. Recently Wang et al. [77] showed radio-protective action of emodin on mice by reducing mortality and intestinal injury via inhibition of apoptosis and modulation of p53. Nucleotide excision repair (NER) is the main DNA repair pathway by which mammalian cells remove UV- or carcinogen-induced DNA damage. Emodin increased unscheduled DNA synthesis in UV-induced intracellular Ca2+ and reduced the cytotoxicity of cisplatin to W138 cells, a human lung diploid fibroblast cell line, suggesting that emodin may promote NER activity. Emodin increased the expression of key subunits of NER complex. Besides, since UV-induced NER is Ca dependent, emodin elevated the Ca2+ influx which might lead to its enhancement of DNA repair [23]. In addition to NER enhancement, inhibition of cytochrome P4501A1 activity might be another mechanism by which emodin displays its anti-mutagenic effect. Emodin was reported to suppress the mutagenicity of one of the heterocyclic amines, 3-amino-1-methyl-1H-pyrido(4,3-b)indole, through inhibiting the activity of cytochrome P4501A1 [24]. However, emodin was not carcinogenic, neither in rats nor in mice [78] but induced dose-dependent estrogenic activities in yeast strains (Saccharomyces cerevisiae) that expressed human estrogen receptors ER alpha or ER beta.

3.7 Is emodin an Anti-Oxidant or Oxidant?

Emodin has been reported to have varying effects, from being an antioxidant to a pro-oxidant and is a major inhibitor of inducible nitric oxide synthase [38]. In some cell-free experimental system, emodin was found to inhibit the superoxide radical production, and lipid peroxidation using the thiocyanate method [12]. However, it did not show inhibitory activity in reactive oxygen- and nitrogen-mediated reactions [79]. In pH8322 plasmid relaxation assay, it works as an antioxidant and protects DNA from radiation induced ROS damage [54]. On the other hand, under cell culture experimental system, emodin has been reported as a free radical generator, which contributes to its immunosuppressive effect and induction of apoptosis [80]. In the formation of ROS including superoxide anions and hydroxyl radicals are proposed to be the metabolic consequences of the redox cycling reactions between the quinines and their corresponding semiquinones [80]. These studies suggest that emodin can serve as a natural and low toxicity ROS generator, and lead to various anti-inflammatory effects and pro-apoptotic, but at the same time, anti-proliferative and anti-inflammatory effects on cancer cells. In addition, emodin can protect against oxidative stress in cultured human kidney (HEK293) cells induced by cisplatin and murine splenocytes from gamma radiation [54]. Likewise, Wu et al. [81] showed protective effects of emodin against calcium overload and endoplasmic reticulum (ER) stress in an acute pancreatitis model in vitro. In another report [82] showed that while emodin induced gene mutations and DNA; it also exhibited free radicals scavenging activity. Thus, reported studies indicate emodin may have differential effects on normal and transformed cells.

3.8 Other Pharmacological Effects

Myocardial protective effect of emodin was observed using isolated perfused rat hearts after ischemia-reperfusion (IR) injury; it associated with significant reduction in the extent of IR-induced reduced glutathione (GSH) depletion [83]. Pre-treatment with emodin per se at 1.2 mmol/kg was found to protect against ischemia-reperfusion injury as assessed by measuring the level of lactate dehydrogenase (LDH) leakage. The muscle contraction induced by emodin was premeditated in the mouse isolated diaphragm and sarcoplasmic reticulum membrane vesicles [84]. This effect was due to the oxidation of the ryanodine receptor and influx of extracellular Ca2+ through voltage-dependent and subsequent release of Ca2+-channels of the plasma membrane, and from sarcoplasmic reticulum. Another study showed that emodin blocked Ca2+ influx of K+ channels. Emodin has been reported to have varying effects, from being an antioxidant and is a major inhibitor of inducible nitric oxide synthase, which need further investigations, especially in vivo.

4. Conclusion

Naturally occurring quinines, especially anthraquinones and their derivatives are widely reported to have range of bioactivity which could be put into therapeutic use. Emodin, one of the most studied anthraquinone derivatives has been reported to have potential therapeutic properties like protection against toxicities to gastrointestinal, liver, kidney and nervous system. Emodin has also been reported to provide beneficial effects against human ailments related to respiration, allergy and inflammation and diabetes. A large number of studies have provided evidence for the anti-viral, anti-bacterial, anti-parasitic and anti-fungal properties of emodin. In addition, significant amount of literature is available highlighting the anti-proliferative and antitumor potential of emodin, either alone or in combination of other therapeutic agents. Recent evidence suggests that emodin can protect against radiation-induced damage as well as modulates a host of metabolic processes. However, the mechanism action for such diverse group of functions is not clear. The redox cycling of quinines and the corresponding semiquinones can lead to the formation of ROS. Therefore, considerable controversies exist regarding the anti- or prooxidant nature of these compounds, which need further investigations, especially in vivo.

Acknowledgement

Financially support received from IGC, New Delhi, India to RS and ABT; and from DBT, Government of India to AG is acknowledged.
References

The anti-inflammatory effect of emodin mediates activation in RBL-2H3 cells, Rep. 64 (2012) 205-211.


