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The Density Functional Theory (DFT) method (B3LP/6-31G) was employed to calculate a set of 
molecular properties (variables or descriptors) of 18 neolignans compounds with activities against 
Epidermophyton floccosum a most susceptible species of dermophytes. The correlation between 
biological activity and structural properties was obtained by using the multiple linear regression 
method. The model obtained showed not only statistical significance but also predictive ability. The aim 
of this study was to correlate the chemical structure of compounds with experimental data from 
biological activity anti-Epidermophyton floccosum. Eighteen (18) descriptors were calculated and 
multiparameter model was obtained through Genetic Function Approximation method. The results 
showed that thermodynamic, dimensional and steric parameters are important in elucidating of action 
mechanism compounds. Four descriptors (Solvation energy, Maximum Elpotential, Standard Enthalpy 
and Standard Gibbs energy) were selected and good model (n = 18; R2 = 0.9215; R2cv = 0.7779; RMSE = 
0.6612, PRESS = 0.5465; F = 20.5407; LOF = 0.016 and R2adj = 0.8954; R2pred = 0.7207; k = 0.9897; k’ = 
1.00; |R2

0 - R’20| = 0.003 was built with Four variables describing the original information. Internal and 
External validation analysis were performed in order to confirm the robustness of the model. The 
proposed model may provide a better understanding of the anti-Epidermophyton floccosum activity of 
neolignans and can be used as guidance for proposition of new chemopreventive agents. 
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1. Introduction 

Fungal infections of the skin and nails are a common global problem. 
The high prevalence of superficial mycotic infections shows that 20-25% 
of the world’s population has skin mycoses making these one of the most 
frequent forms of infection. Pathogens responsible for skin mycoses are 
primarily anthropophilic and zoophilic dermatophytes from the genera 
Trichophyton (T.), Microsporum (M.) and Epidermophyton (E.). There 
appears to be considerable inter-continental and intra-continental 
variability in the global incidence of these fungal infections. Trichophyton 
rubrum, T. interdigitale (mentagrophytes var. interdigitale), M. canis, M. 
audouinii, T. tonsurans and T. verrucosum are the most common [1] but the 
attack rates and incidence of specific mycoses can vary widely. Local socio-
economic conditions and cultural practices can also influence the 
prevalence of a particular infection in a given area. For example, tinea 
pedis (athletes foot) is more prevalent in developed countries than in 
emerging economies and is likely to be caused by the anthropophilic germ 
T. rubrum. In poorer countries, scalp infections (tinea capitis) caused by T. 
soudanense or M. audouinii are more prevalent. This review summarises 
current epidemiological trends for fungal infections and focuses on 
dermatomycosis of glabrous skin on different continents [2]. Chemical 
investigations of species of Virola and related genera from the Amazonian 
region lead to the hypothesis that the alleged usefulness of plasters made 
from their leaves or bark resin in the treatment of skin fungal infections, 
may be due to the fungistatic or fungitoxic activity of neolignans [3]. 
Amongst the wide variety of known neolignans, the 8.O.4′-type represents 
a small group whose members were isolated exclusively from plants of the 
Myristicaceae. Different ketones and alcohols of threo and erythro relative 
configuration have been isolated from Virola surinamensis (Roland) Warb 
[4]. In preliminary studies made with agar-dilution assays, we carried out 
an evaluation of the antifungal activities of 8.O.4′-neolignans and reported 
that alcohols, 1-12, but not the ketones 13-18 possess significant 
antifungal activity (MICs 5 - 250 μg/mL), against dermatophytes a group 

of fungi which characteristically infect the keratinized areas of human 
skin. This activity was dependent upon relative stereochemistry (erythro 
up to three times more active than threo alcohols) and upon substitution 
patterns at rings A and B. In addition, Epidermophyton floccosum was the 
most susceptible species [5]. 

QSAR methodologies have the potential of decreasing substantially the 
time and effort required for the discovery of the new medicines [6]. A 
major step in constructing the QSAR models is to find a set of molecular 
descriptors that represents variation of the structural properties of the 
molecules [7]. The QSAR analysis employs statistical methods to drive 
quantitative mathematical relationships between chemical structure and 
biological activity [8]. Thus, the use of the QSAR in the development of a 
theoretical model to predict the biological activity of a set of compounds is 
very important. The strategy used in the QSAR methodology includes the 
following steps: (i) selection of a data set; (ii) generation of the molecular 
structures; (iii) optimization of the geometry of the molecular structures 
by appropriate method; (iv) generation of several structural descriptors; 
(v) application of variable selection or/and methods data reduction of the 
calculated descriptors; (vi) regression analysis and finally (vii) evaluation 
of the validity and predictability of the developed QSAR models [8]. 
 

2. Experimental Methods 

The purpose of the present work is to perform a quantum chemical 
QSAR study of the neolignans derivatives [Table 1a, b and c] to investigate 
the binding mode of these compounds and properties that are relevant for 
their activity. We use the approach of Hansch [9] in classical QSAR analysis 
for obtain linear model by the Multilinear regression Genetic function 
(MLR-GF) method to predict the experimental activity. 
 
2.1 Chemical Data 

Biological data on the activity of ketone derivatives has been obtained 
from the literature [1-3] (Table 1a, b and c). The activity data refers pMIC, 
which indicates the biological activity of compounds experimentally 
determined necessary for the inhibition of Epidermophyton floccosum 
resistant. The -log MIC (molar) scale refers pMIC. 
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(a) 

 
 
(b)    (c) 
 

       
 

Table 1 Class a 

Compound R1 R2 R3 R4 MIC pMIC 

1 OCH3 OCH3 H Allyl 0.103 0.99 

2 OCH3 OCH3 H Allyl 0.154 0.81 

3 OCH3 OCH3 OCH3 Allyl 1.120 0.92 

4 OCH3 OCH3 OCH3 Allyl 0.143 0.84 

5 OCH2O - H Allyl 0.013 1.89 

6 OCH2O - H Allyl 0.040 1.40 

Class b 

Compound R1 R2 R3 R4 MIC pMIC 

7 OCH3 OCH3 H Allyl 0.042 1.38 

8 OCH3 OCH3 H Allyl 0.670 0.17 

9 OCH3 OCH3 H t-propenyl 0.195 0.71 

10 OCH3 OCH3 H t-propenyl 0.279 0.55 

11 OCH3 OCH3 OCH3 t-propenyl 0.064 1.19 

12 OCH3 OCH3 OCH3 t-propenyl 0.129 0.89 

Class c 

Compound R1 R2 R3 R4 R5 MIC pMIC 

13 OCH3 OCH3 H Allyl OCH3 0.647 0.65 

14 OCH3 OCH3 OCH3 Allyl OCH3 0.600 0.60 

15 OCH2O  - H Allyl OCH3 0.675 0.68 

16 OCH3 OCH3 H Allyl H 0.701 0.15 

17 OCH3 OCH3 H t-propenyl H 0.751 0.70 

18 OCH3 OCH3 OCH3 t-propenyl H 0.647 0.65 

 
2.2 Geometry Optimization 

The Core-Seven personal computer equipped with the operating system 
Windows® Seven was used for making calculations of this work. The 
molecular structures of the dataset were sketched using Spartan ’14 
version 1.1.4 developed by Wave Function. The first step consisted in 
obtaining the molecular geometry of all the derivatives from the dataset 
(Table 1a, b and c) was energy minimization [10] and geometry 
optimization using Merck Molecular Force Field (MMFF) in semi-empirical 
PM3 Method [11]. We initially performed geometry optimization, which 
was done using semi-empirical PM3 (Parametric Method) Hamiltonian 
method in the Spartan ’14 program. After this first procedure, the stability 
of the molecular geometry was obtained by Density Functional Theory 
method (B3LP/6-31G), using Spartan ’14 software v1.1.4. 

 
2.3 Structural Descriptors 

In the quantum chemical analysis we calculated 18 properties of all 
compounds. The calculated physical-chemical parameters types are: 
hydrophobic, electronic, steric, thermodynamic, dimensional, topological 
and geometric. All the molecular properties were calculated by Spartan ‘14 
program and MMPP computational package. 

2.4 Computational and Statistical Details 

The genetic function approximation (GFA) algorithm offers a new 
approach to the problem of building quantitative structure-activity 
relationship (QSAR) and quantitative structure-property relationship 
(QSPR) models. Replacing regression analysis with the GFA algorithm 
enables the construction of models competitive with or superior to those 
produced by standard techniques and makes available additional 
information not provided by other techniques. Unlike most other analysis 
algorithms, GFA gives multiple models, where the populations of the 
models are created by evolving random initial models using a genetic 
algorithm [12]. GFA can build models using not only linear polynomials 
but also higher-order polynomials, splines and other nonlinear functions. 
The genetic algorithms are search algorithms that take inspiration from 
natural genetics and evolution. In this section, the ideas underlying genetic 
algorithms are briefly described, emphasizing the aspects relevant to the 
genetic function approximation (GFA) approach to model building. The 
GFA algorithm itself applies these ideas to the problem of function 
approximation [13] given a large number of potential factors influencing a 
response including several powers and other functions of the raw inputs, 
to find the subset of terms that correlates best with the response. The 
central ideas of genetic algorithms are simple. The region to be searched 
is coded into one or multiple strings. In the GFA, these strings are sets of 
terms-powers and splines of the raw inputs. Each string represents a 
location in the search space. The algorithm works with a set of these 
strings called a population. This population is evolved in a manner that 
leads it toward the objective of the search. This requires that a measure of 
the fitness of each string, corresponding to a model in the GFA, be available 
following this, three operations are performed iteratively in succession: 
selection, crossover and mutation. Newly added members are scored 
according to a fitness criterion. In the GFA, the scoring criteria for models 
are all related to the quality of the regression fit to the data [14]. The 
selection probabilities must be re-evaluated each time a new member is 
added to the population. Stability and convergence In common with other 
iterative minimization algorithms, there are issues with the stability and 
convergence of the GFA algorithm. An indication of the stability of the GFA 
algorithm can be obtained by generating a plot showing the evolution of 
variable usage with time. Such a plot shows the number of occurrences of 
each variable in the population for each generation of the evolution. For 
practical reasons to reduce the amount of data that would be collected, 
such a plot is generated only for those variables that occur most commonly 
in the final population and the data are not normally collected for every 
generation. The GFA algorithm is assumed to have converged when no 
improvement is seen in the score of the population over a significant 
length of time, either that of the best model in each population or the 
average of all the models in each population. When this criterion has been 
satisfied, no further generations are calculated. Advantages of GFA the GFA 
algorithm approach has several important advantages over other 
techniques [15]: 

 
1. It builds multiple models rather than a single model. 
2. It automatically selects which features are to be used in the 

models. 
3. It is better at discovering combinations of features that take 

advantage of correlations between multiple features. 
4. It incorporates Friedman’s lack-of-fit (LOF) [16] error measure, 

which estimates the most appropriate number of features, resists 
over fitting and allows control over the smoothness of fit. 

5. It can use a large variety of equation term types in construction of 
its models e.g., splines, step functions, high order polynomials. 

6. It provides, through study of the evolving models, additional 
information not available from standard regression analysis, such 
as the preferred model length and useful partitions of the data set. 
The procedure continues for a user-specified number of 
generations, unless convergence occurs in the interim. 
Convergence is triggered by lack of progress in the highest and 
average scores of the population. 

 
2.5 Building a Structure-Activity Relationship or Model 

The genetic function approximation (GFA) algorithm offers a new 
approach to the problem of building quantitative structure-activity 
relationship (QSAR) and quantitative structure-property relationship 
(QSPR) models. Replacing regression analysis with the GFA algorithm 
enables the construction of models competitive with or superior to those 
produced by standard techniques and makes available additional 
information not provided by other techniques. Unlike most other analysis 
algorithms, GFA gives multiple models, where the populations of the 
models are created by evolving random initial models using a genetic 
algorithm. GFA can build models using not only linear polynomials but also 



45 
 

 

A. Ajala et al / Journal of Pharmaceutical and Medicinal Research 2(1) (2016) 43–47                                                                         

Cite this Article as:  A. Ajala, A. Uzairu, I.O. Suleiman, QSAR studies of neolignans derivatives using physicochemical descriptors: MLR and GFA-modeling, J. Pharm. Med. Res. 2(1) (2016) 43–47. 

higher-order polynomials, splines and other nonlinear functions [16]. 
Friedman's MARS algorithm is a statistical technique for modeling data. It 
provides an error measure called the lack-of-fit (LOF) score, Eq. (1) that 
automatically penalizes models with too many features. It also inspired the 
use of splines as a powerful tool for nonlinear modeling [16]. The equation 
below is for LOF: 

 

𝐿𝑂𝐹 =  
𝑆𝑆𝐸

(1−
𝑐+𝑑𝑝

𝑀
)

2     (1) 

 
Where SSE is the sum of squares of errors, c is the number of terms in the 
model, other than the constant term, d is a user-defined smoothing 
parameter, p is the total number of descriptors contained in all model 
terms (again ignoring the constant term) and M is the number of samples 
in the training set. Unlike the commonly used least squares measure the 
LOF measure cannot always be reduced by adding more terms to the 
regression model. While the new term may reduce the SSE, it also 
increases the values of c and p, which tends to increase the LOF score. 
Thus, adding a new term may reduce the SSE, but actually increases the 
LOF score. By limiting the tendency to simply add more terms, the LOF 
measure resists over fitting better than the SSE measure [17]. 
 

3. Results and Discussion 

The aim of the current study is mainly to study the different 
physicochemical parameters linear models and their regression analysis 
by using indicator variable and different parameters. 

A QSAR analysis was performed to explore the structure activity 
relationship of different 18 neolignans derivatives acting as antifungi. In a 
QSAR study, generally, the quality of a model is expressed by its fitting and 
prediction ability. In order to build and test model, a data set of 18 
compounds was separated into a training set of 13 compounds, which was 
used to build model and a test set of 5 compounds, which was applied to 
evaluate the built model. The GA-MLR analysis led to the derivation of one 
model, with four descriptors. With the selected descriptors, we have built 
the linear model using the training set data and obtained the best model 
given by Eq. (2) below: 

 
𝑝𝑀𝐼𝐶 = −0.05424𝑎 − 0.003097𝑏 + 23.45799𝑐  

                      −23.4555𝑑 + 1.139116   (2) 

 
where, a = solvation energy, b = maximum Electropotential, c = enthalpy 
and d = Gibbs energy. N = 13; Friedman LOF = 0.0160; R2 = 0.9215; R2adj = 
0.8954; R2cv = 0.7779; F = 20.5407 and R2pred = 0.7202 

 
Table 2 List of descriptors used in this study 

Descriptors Type Significance 

Solvation 

energy 

Quantum 

Electronics 

This is the minimum energy of the molecular 

conformation 

Maximum 

Elpotential 

Dimensional It describe the van der waals surface area of 

the molecule 

Standard 

Enthalpy (H°) 

Thermodynamic In theses descriptors, the molecule atoms 

represent a set of diverse points in space and 

the atomic property and function are 

evaluated at those points 

Standard Gibbs 

Energy (G°) 

Thermodynamic It depends on the spatial array of the aromatic 

ring in the synthesized compounds also 

necessary to study the interaction of the 

ligand with the receptor 

 
Table 3 Table for test set 

Compound Observed Activity Predicted Activity Residual 

2 0.81 1.1269 0.3169 

4 0.84 0.884675 0.044675 

6 1.4 1.01247 -0.38753 

8 0.17 1.380989 1.210989 

10 0.55 0.780332 0.230332 

 

To investigate the observed data, the distribution of the data must be 
first investigated. Most regression algorithm relies on the data that is being 
normally investigated in case the data are not normally distributed we 
should consider applying a numerical transformation to achieve a normal 

distribution. Observed data in Table 1(a, b and c) show acceptable normal 
distribution, so no need to perform a numerical transformation. Table 4 
shows a univariate analysis for the inhibition data. Table 4 contains 
several statistical measures that describe the observed activity data. The 
most important parameters in Table 4 are the skewness and kurtosis. 
Skewness is the third moment of the distribution, which indicates the 
symmetry of the distribution. 

 
Table 4 Univariate analysis of the observed data 

S.No. Statistical parameters pMIC 

1 Number of sample points 13 

2 Range 1.23000000 

3 Maximum 1.38000000 

4 Minimum 0.15000000 

5 Mean 0.79333333 

6 Median 0.70500000 

7 Variance 0.09030560 

8 Standard deviation 0.31387100 

9 Mean absolute deviation 0.23388900 

10 Skewness -0.01826450 

11 Kurtosis -0.26285600 

 
Table 5 Observed and predicted activity for training set 

Observed Activity Predicted Activity Residual 

0.99000000 1.00890000 -0.01890000 

0.92000000 1.07022400 -0.15022400 

1.89000000 1.78829400 0.10170600 

1.38000000 1.38493100 -0.00493100 

0.71000000 0.72571600 -0.01571600 

1.19000000 0.96620300 0.22379700 

0.89000000 0.96620300 -0.07620300 

0.65000000 0.75221400 -0.10221400 

0.60000000 0.51273700 0.08726300 

0.68000000 0.68004800 -4.800000e-5 

0.15000000 0.06590000 0.08410000 

0.70000000 0.80034900 -0.10034900 

0.66000000 0.68828000 -0.02828000 

 
Table 5 shows the experimental pMIC and the predicted pMIC using the 

GFA approach of the training set. This shows how the GFA method 
predicted the pMIC. 

The genetic function approximation analysis gives a summary of the 
input parameters used for the calculation that is the square of the 
correlation coefficient (R2), the cross validated correlation coefficient 
(R2cv), the Fisher criterion-(F) and the R2 predicted were used as criteria 
for the stability and the robustness of the models. Also it reports whether 
the GFA algorithm converged in the specified number of generations. 
Convergence is achieved when there has been no improvement in the 
scoring function for a number of generations. It can be seen from Table 6 
that the accuracy of the model, indicated by the R2 value is reasonably high 
therefore the predictive power of the model as indicated by the adjusted 
R2 and cross validated R2 values, is also high even though the regression is 
significant according to F-test. The Friedman’s lack-of-fit (LOF) score [17], 
which evaluates the QSAR model by considering the number of descriptors 
as well as the quality of fitness is chosen the lower the LOF, the less likely 
it is that GFA model will fit the data. The significant regression is given by 
F-test and the higher the value the better the model. 

 
Table 6 Validation table of the genetic function approximation 

S.No. Equation Parameter Values 

1 Friedman LOF 0.016 

2 R2 0.9215 

3 R2adj 0.8954 

4 R2cv 0.7779 

5 F-value 20.5407 

 
Fig. 1 shows a relation between the predicted values using the Eq. (1) 

above and the experimental data in Table 1. Also Table 2 shows the 
distribution of the residual values against the observed activity values. A 
residual can be defined as the difference between the predicted value in 
the generated model and the measured value for observed activity. To test 
the constructed QSAR model, potential outliers have been identified in 
Figs. 3a and b. An outlier can be defined as a data point whose residual 
value is not within two standard deviations of the mean of the residual 
values. Although the number of outliers can vary depending on the quality 
of the dataset (e.g., incorrect measurements of physical properties or 
errors in molecular structures will reduce the data set quality), it still a 
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good test of QSAR model is to identify potential outliers. Fig. 3a and b 
contains two charts. One contains the residual values plotted against the 
observed pMIC and the other displays the residual values plotted against 
Table 1 raw number. Each chart contains a dotted line that indicates the 
critical threshold of two standard deviations beyond which a value may be 
considered to an outlier. Inspection of Figs 3a and b shows that there is no 
points appeared outside the dotted lines which make the QSAR model 
acceptable. 

 

 
Fig. 1 Plot of predicted activity against observed activity for training set 

 
 

 
 

Fig. 2 plot of Residual data against observed activity for training set 

 

 
(a) 

 

 
(b) 

 

Fig. 3 Outlier analysis a) It contains the residual values plotted against the Observed 
pMIC and b) displays the residual values plotted against Table 1 raw number 

 

 
 

Fig. 4 The graph of the variable usage against generation number 

In Fig. 4 the Y-axis represents the different molecular descriptors used 
in this study as shown on the left side of the graph. On the other hand the 
X-axis represents the number of the generations we could generate for 
each of these molecular descriptors. According to Fig. 4, at each step the 
GFA uses the current population to create the children that makes up the 
next generation. The algorithm selects a group of individuals in the current 
population called parents, who contribute their genes the entries of their 
vectors to their children. The algorithm usually selects individuals that 
have better fitness values as parents. User can specify the function that the 
algorithm uses to select the parents. The GFA creates three types of 
children for the next generation: Elite children, crossover children and 
mutation children. In our QSAR study, the algorithm stops when the 
number of generations reaches the value of 180 generations. 

 

 
 

Fig. 5 The Williams plot, the plot of the standardized residuals versus the leverage 
value for training and test set 

 

The leverage values can be calculated for every compound and plotted 
vs. standardized residuals and it allows a graphical detection of both the 
outliers and the influential chemicals in a model. Fig. 5, shows the Williams 
plot the applicability domain is established inside a squared area within ± 
2.5 bound for residuals and a leverage threshold h*, [18]. 

 

ℎ∗ =
3(𝑘+1)

𝑛
    (3) 

 

Where ℎ∗ the warning leverage, k is the number of descriptor in the model 
and n is the number of observation that make up the training set. It 
demonstrates that all the compounds of the training set and test set are 
inside of this square area. From Fig. 5, it is obvious that there are no outlier 
compounds with standard residuals > 3d for both the training and test 
sets. Furthermore, all the chemicals have a leverage lower than the 
warning h* value of 1.154. All results confirm that the build model is a valid 
model and can be utilized to predict the activity of neolignans. 
 

4. Conclusion 

A QSAR model was derived using GFA for a series of neolignans 
antifungals. The best model generated correlates with the antifungal 
activity. The model has moderate internal and external predictivity. 
Significant regression equations were obtained by MLR method for 13 
neolignan compounds according to their antifungal activity. The best 
regression equation obtained was based on the following descriptors: 
solvation energy, maximum electropotential, standard enthalpy and 
standard Gibbs energy. The model obtained showed not only statistical 
significance but also predictive ability and robust. These variables allowed 
a physical explanation of electronic molecular properties contributing to 
antifungal inhibitory potency as the electronic character relates directly to 
the electron distribution of interacting molecules at the active site. On the 
basis of the developed QSAR models, novel molecules can be designed as 
potential antifungi. 
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